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Abstract

The Linux open source community has done well to create

a wide array of drivers to support the multitude of devices

available on the market. Virtual Choices, a research OS

currently lacking in device driver support, would benefit from

such a source base by utilizing a device driver adapter. We

present an adapter, LKMA, which creates a translation of

the Linux module into a module that can be loaded by our

newly developed ELFLoader in Virtual Choices. With this

adapter, the Virtual Choices operating system can use Linux

device drivers with minimal porting efforts by the system

programmer.

1 Introduction

One of the most tedious portions of operating system
development is writing the numerous device drivers required
by the wide variety of devices now availble in the market.
Virtual Choices, a research operating system at the Univer-
sity of Illinois in Urbana-Champaign, has a limited number
of these device drivers. Linux, on the other hand, is an open
source operating system for which device drivers are being
written and maintained by the computing population every
day. So that Virtual Choices may take advantage of Linux’s
device driver source base, we offer a device driver adapter,
Loadable Kernel Module Adaptor (LKMA).

The Virtual Choices Operating System is a research
OS which demonstrates that an OS may be written al-
most entirely in an object-oriented fashion using the C++
programming language. As a result, everything in Virtual
Choices is derived from an Object class. Moreover, Virtual
Choices has a notion of a Dynamic Class in which classes can
be loaded into the kernel at runtime. The Loadable Kernel
Module (LKM) is somewhat analogous to the Dynamic
Classes in that they too can be dynamically loaded into the
kernel at runtime using the insmod command.

With these considerations in mind, the overall concept
of the LKMA is shown in Figure 1. There are two ends,
the Linux end and the Virtual Choices end. The Linux end
simply consists of the LKMs, compiled on a native Sparc
host, that will be adapted to choices. At the Virtual Choices
end, taking advantage of the already existing infrastructure
for the Dynamic classes, is a three-part design. The LKMs
are adapted by load, link, and relocation methods into
the Virtual Choices kernel. These adapted LKMs inherit
from two classes. The first is the LKMAdaptor class which

performs all of the common adaptations needed by all LKMs;
printf, memcopy, and bzero, for example. The second is the
derived child class that implements all of the driver specific
adaptations. This class contains all of the adaptations
a given category of device drivers–like Ethernet–need to
interface to the Virtual Choices kernel.
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Figure 1. Fundamental LKMA Architecture

The rest of this document is organized as follows.
Section 2 discusses the overall architecture of the LKMA.
Section 3 details the ELF object format and the ELFLoader

developed for the LKMA. Section 4 lists the other special
considerations that had to be made in the development of
LKMA. Section 5 describes the code added to the Virtual
Choices source base and Section 6 provides an example
of its use. Section 7 evaluates the success of the project
and Section 8 describes the overall contributions made by
LKMA. At the end of the document are biographies of each
team member and his or her individual contributions to the
development of LKMA.

2 Design

The LKMA architecture has two major parts. The first
part is an ELF (Executable and Linking Format) loader and
linker that is capable of reading compiled LKM modules
in ELF object format and resolving both their defined



and undefined symbols against any provided symbol table.
The second part is the LKMAdaptor, which encompasses the
LKMAdaptor base class and all classes that inherit from it.
This part is responsible for providing the actual adaptation
between Linux calls and Virtual Choices calls. This section
describes the architecture design of each of these parts.

2.0.1 Overview

Figure 2 depicts an overview of the LKMA architecture.
Each relevant module (in Linux) or class (in Virtual Choices)
is depicted as as a rounded box containing the name of
the module or class. Relationships between entities are
shown with labeled arrows. Virtual Choices uses a separate
interface specification for each category of device. Thus,
each category of device has a corresponding ”adapted device
driver” class that inherits both from the Virtual Choices
interface specification and from LKMAdaptor. Through
LKMAdaptor, the adapted device driver can then make use
of an ELFLoader class to load, link, and relocate a loadable
Loadable Kernel Module (LKM), to provide the actual
implementation of the device driver. Both LKMAdaptor and
its children can provide Linux kernel emulation functions, to
provide the loaded LKM with the interface it expects from
the Linux kernel. The adapted device drivers ”implement”
the driver interface that Virtual Choices expects, by making
use of the functionality provided in the loaded LKM. A single
adaptor class may be used with multiple LKMs, as long as
sufficient Linux kernel emulation is provided. Ideally, there
would need to be only one adaptor class for each Virtual
Choices driver interface class, which would be able to make
use of any LKM for that type of device.
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Figure 2. Detailed LKMA Architecture

Of the classes shown above, our project comprises:

� ELFDictionary,

� ELFContainer,
�
ELFLoader,

� LKMAdaptor,
� HelloWorldDevice,
� HelloWorldLKM,
� EthernetDriverLKM.

We also had to make numerous changes to other parts
of the Choices OS as discussed in the Section 4. These
changes were necessary both to deal with legacy issues
and to incorporate our LKMAdaptor architecture. Also, it
should be noted that HelloWorldDevice, HelloWorldLKM,
and EthernetDriverLKM are simply examples of using the
LKMAdaptor architecture, rather than being a fundamental
part of it.

2.0.2 Loading a Loadable Kernel Module

LKMs are generally compiled into ELF format. The first
step in making use of an LKM is to load and link the ELF
binary. This is similar to what occurs when an executable
is linked from several source binary object files, except we
perform this loading and linking at run-time, dynamically
linking the ELF object into the Virtual Choices kernel. This
is also, in fact, very much like what happens when an LKM
is loaded into the Linux kernel, using insmod.

The Virtual Choices philosophy is that every file is
treated itself as a file-system. Using this philosophy, the
ELFLoader class makes use of ELFContainer and ELFDictionary

to load the various sections of the ELF file. ELFContainer

handles parsing the file and retrieving sections as they are
requested by name. ELFDictionary provides a directory
service into an ELF file. More details on these ELF classes
are discussed in Section 3.

When an ELFLoader class is instantiated, its constructor
must be passed the name of an ELF object file to load,
as well as an export symbol table and an import symbol
table. These symbol tables will be used to resolve undefined
and defined symbols, respectively. From the ELF object file
specified, ELFLoader reads the text (executable code), data
(initialized data), bss (uninitialized data), rodata (non-
string read-only data), and rodata.str1.8 (string read-only
data) sections. It also loads the relocation information for
each of the above sections, as well as the symbol table
and string table from the ELF file where the string table
provides the names of the symbols. It then proceeds with
the following steps:

1. Resolve undefined symbols.

2. Relocate symbols

3. Relocate references to symbols

4. Resolve defined symbols

Of the above steps only the fourth–resolve defined
symbols–is specific to ELFLoader. The other three steps are
part of any common link editor. We need the fourth step
to allow adaptor classes the ability to call functions and
make use of variables that are defined in the loaded ELF
file. It should be noted that our ELFLoader, implementation
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was heavily influenced by the existing Virtual Choices
COFFLoader implementation which loads the old Common
Object File Format object files. The four steps listed above
are described below.

Resolving undefined symbols consists of searching through
the provided export symbol table for names that match
undefined symbols in the loaded ELF file’s symbol table.
When a match is found, the address provided by the export
symbol table is placed in the loaded symbol table.

The next step is relocating symbols. Since the object
file is now loaded into some location in memory, the section-
offsets that specify the location of a symbol’s data or func-
tion within the ELF file must be replaced with actual virtual
memory addresses corresponding to where the symbol’s data
or function has been stored in memory. This is done easily
by adding the memory location of the buffer that now holds
the symbol’s section to the symbol’s location value.

After relocating symbols, any references to those symbols
within any of the sections; especially the executable text
section must be altered to reflect the new location of the
symbol’s data or function. This process is straightforward.
One simply needs to follow the prescribed actions as specified
by the loaded relocation info for each section. However
reference relocation is processor-architecture dependent; our
current implementation is for 32-bit Sun SPARC machines.

Finally, we resolve defined symbols. This is similar to
resolving undefined symbols, except in reverse. Instead of
placing the addresses of exported symbols into the loaded
symbol table wherever there was an undefined symbol, we
instead extract addresses from the loaded symbol table and
place them into the imported symbol table wherever the
symbol names match. This allows the adaptor classes to
obtain the addresses of data and functions in the loaded
ELF file.

At this point, the ELF file has been loaded into memory,
and linked with the already running Virtual Choices kernel.
It is now ready for use by a driver adaptor class.

2.0.3 Adapting a Loadable Kernel Module

The LKMAdaptor base class makes use of the ELFLoader

class and provides the basic functionality of adapting Linux
system calls into Virtual Choices system calls, as well as
mapping Virtual Choices driver class member function calls
into Loadable Kernel Module calls. At the most simplistic
level, the problem is basically one of interface adaptation.
Linux and Virtual Choices have different interfaces, and thus
some adaptor needs to sit between them to translate.

Within the LKMAdaptor namespace exists a static array
of ”export tuples” of type ELFLoader::ExportTuple. This
array, LKMAdaptor::exported symbols, is simply a big table
associating Linux system call symbol names with adaptor
function pointers. For example printk is associated with
the address of adaptor printk(). Of course, every system
call that an LKM can be expected to make to the Linux
kernel must be implemented as an adaptor, which makes
the corresponding calls in Virtual Choices. For example,
adaptor printk() calls Console().formattedWrite().

It is not, however, necessary to place all the exported
symbols in this global table. LKMAdaptor child classes

can provide their own static adaptor functions for ker-
nel calls that are specific to that kind of device. The
global exported symbols table is combined with any sym-
bols a child class may wish to export. This aggregate
exported symbols table will be passed to an ELFLoader

object, to provide the addresses to link undefined symbols
in the loaded module against.

Exporting symbols that the loaded module expects is
only part of the battle. It is also necessary to “import”
symbols from the loaded module. That is, there are some
functions provided in the loaded module that must be called
by some other part of the operating system. If this were
not the case, the module would be useless, because its code
would never be executed. The canonical example of such a
function is the standard init module() function that every
LKM is expected to provide. We also use this capability
to “grab” and set LKM module parameters. Each class
that inherits from LKMAdaptor may provide its own list of
symbols it wishes to import. By default, the init module

and cleanup module symbols will always be imported, as
these are provided by every LKM.

Virtual Choices is, of course, an object-oriented oper-
ating system. As such, it expects all of its device drivers
and services to be implemented as objects or collections of
objects. Thus, to use a loaded LKM as a device driver
or service in Virtual Choices, we must encapsulate the
module within an object. Virtual Choices will talk to the
“wrapper object” through the member function interface it
understands, and the ”wrapper object” will translate those
invocations into calls into the loaded module code. This
“wrapper object” is nothing more than an instance of a class
that inherits from LKMAdaptor and expands it by providing
the interface that Virtual Choices expects for the particular
device or service in question. It also provides device specific
Linux emulation routines that the loaded LKM expects and
that are not already implemented in LKMAdaptor.

Generally, device drivers for a particular class of device
are expected to have a certain interface. Depending on the
details of the device, the implementation will vary, but the
interface is fixed, so that the OS can actually talk to the
device driver. Of course, this is the whole point of a device
driver, to present a known interface to an unknown device.
In Virtual Choices, this is handled by having abstract base
classes that represent different types of devices. These
base classes provide an interface that is implemented in
the MachineDependent code, via inherited classes. In our
case, we wish to use a loaded Linux kernel module as the
implementation, while providing the interface that Virtual
Choices can understand. Thus, we need to create a class that
inherits from both the base class for the device in question,
as well as the LKMAdaptor class. Luckily, C++ provides a
multiple inheritance mechanism used to accomplish this.

Note that Linux also expects a standard interface from
a device driver, and as such, the loaded module will provide
a standard interface. Thus, while we need to create a new
adaptor for each type of device, we do NOT need to create
adaptors for every LKM we wish to load. A single Ethernet-
specialized LKMAdaptor should be sufficient to allow loading
any Linux Ethernet driver for any corresponding Ethernet
device. Since we only need to translate the interface at the

3



Linux-Virtual Choices boundary, we do not have to worry
about the actual implementation within the LKM, or the
actual device being driven. Simply, it is only necessary to
categorize the device properly.

3 ELF Module Format and Parsing in

Virtual Choices

As previously mentioned, a portion of the LKMA was
devoted to an ELFLoader. This section discusses the details
of parsing the ELF module format in Virtual Choices.

Linux modules have traditionally been Executable and
Linkable Format (ELF) [11] dynamic modules. Virtual
Choices already contains a COFF object file parser; however
the fact that the COFF format is largely obsolete in the
UNIX world led us to implement a parser that provides a
consistent file system interface for every section in the ELF
module. The ELF object file format is shown in Figure 3.

(optional)

ELF Header

Program Header Table
(optional)

Section 1

...

Program Header Table

Segment 1

ELF Header

Linking View Execution View

Section n

...

Section Header Table

Segment 2

...

Section Header Table

Figure 3. ELF Object File Format

Each ELF file is made up of one ELF header, followed
by zero or more segments and zero or more sections. The
segments contain information that is necessary for runtime
execution of the file, while sections contain important data
for linking and relocation. Each byte in the entire file is
taken by no more than one section at a time, but there can
be orphan bytes, which are not covered by a section. In the
normal case of a UNIX executable one or more sections are
enclosed in one segment. The segments and sections of the
file are listed in a program header table and section header
table respectively.

The program header table is absent in the case of Linux
Kernel modules as they are relocatable in nature. Hence we
derive most of the ELFLoader design from the section header
table. Every section has an entry in the table; each entry
gives information such as the section name, the section size
etc. Each section in an ELF file can have an associated string
table and symbol table in addition to the default string table
the offset of which is addressable through the section header
table. The default string table whose index is provided in

the ELF header contains strings to represent section names.
A given string is referenced as an index into the string table
section. The first byte, which is index zero, is defined to
hold a null character. Likewise a string table’s last byte is
defined to hold a null character, ensuring null termination
for all strings. The string table associated with the symbol
table section is located by following the sh link offset of
that section which provides an index into section header.
We currently support ELF-32 files though support for ELF-
64 can be easily added.

Each section is presented as a file to the file system
interface with well known id’s provided for the Symbol Table,
the default String Table, symbol String Table and the ELF
header. The rest of the sections have the header, section
information, and relocation information. A relocation
section has the string .rela prepended to the name of the
original section name.

The ELFContainer and the ELFDictionary class to-
gether implement the ELF file parsing in Virtual Choices.
The ELFContainer class essentially provides matching of file
id’s or inodes to actual memory locations in the object file.
The ELFDictionary class contains the default section names
and provides function lookups that are in turn used up by
the ELFLoader class for detailed querying.

4 Special Considerations

In addition to the LKMA itself, a number of consider-
ations had to be made in this project. These included
Virtual Choices legacy issues, updating the existing network
interface, as well as device drivers considerations, both
on the Linux side and the Virtual Choices side. These
considerations are detailed in the sections below.

4.1 Virtual Choices Legacy Issues

Before actually adding the LKMA to Virtual Choices, a
number of steps had to be taken to update the source base
to something that was functional for present day compilers.
The following provides a list of these issues but does no
justice to the work involved in solving them.

1. C++ legacy issues: Many virtual functions were
being hidden by type mismatches. No longer do void

function(unsigned int) and void function(int)

have the same type signature.

2. Incorrectly implemented asynchronous closures:
init functions in the File System were not initializing
the correct function at closure activation.

3. Virtual Choices COFFLoader: Virtual Choices
original COFFLoader was used to load the Dynamic
Classes in COFF format. This binary format used
by Sparc had been replaced by the ELF format. An
ELFLoader was developed based largely on the original
COFFLoader design and is detailed in Section 3.

4. Virtual Choices Ethernet Interface: NIT was
outdated, packet buffers no longer worked, and Virtual
Choices had to be updated with the newer, more
generic Data Link Packet Interface (DLPI). DLPI is
addressed in further detail in Section 4.2.
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4.2 Data Link Packet Interface

The DLPI API’s [12] allow Ethernet packets to be sent and
received from the user land level on Solaris 5.x. This is
necessary for our Ethernet driver since it needs access to the
underlying datalink interface.

The Data Link Provider Interface specifies a STREAMS
kernel-level implementation of the ISO Data Link Service
Definition (ISO 8886) and Logical Link Control (ISO 8802/
2) LLC. DLPI enables a data link service user to access
and use any of a variety of conforming data link service
providers without special knowledge of the provider’s pro-
tocol. Specifically, the interface is intended to support X.25
LAPB, BX.25 level2, SDLC, ISDNLAPD, Ethernet, FDDI,
Token Ring, Token Bus, BISYNC, and other datalink-
level protocols. The interface specifies access to data link
service providers, and does not define a specific protocol or
protocol implementation. The DLPI driver that we interface
with is the eri Fast Ethernet driver a STREAMS-based
hardware driver supporting the DLPI interface accessible via
/dev/eri.

Figure 4. Data Link Packet Interface

We enable DLPI in the promiscuous mode to ensure that
the Virtual Choices Ethernet driver also receives packets
that not necessarily arrive for the host machine. This gives
us flexibility to use a Virtual Choices specific MAC and IP
Address. A user level daemon is currently used to arbitrate
packet transfer for processes in the same host. This was done
primarily to support sending of packets within the same host
by multiple Virtual Choice instances. We also use a packet
filter over DLPI in order to reduce the load on the number of
packets handled by our interrupt handler/driver. The mode
we operate in is defined as the “raw mode” as we directly
receive the packet including the 14-byte Ethernet header.
The packets that are sent out on the wire also need the
correct 14-byte Ethernet header.

Packet reception

The EthernetLKM Driver waits for a signal to be received on
the file descriptor associated with the DLPI Interface. The
signal is verified to ensure that the received signal indicates
a presence of a new data frame. The packet is read using
DLPI calls, conversion into Linux friendly socket buffers is
performed, and this socket buffer is passed on to the actual
Linux interrupt routine which does packet processing on the

data received. The Linux receive interrupt routine makes a
call to it’s upper layer which is emulated and a redirection is
made to call the Virtual Choices NetworkDriver::receive

function and completes the packet reception control flow.

Packet transmission

The EthernetDriverLKM presents a TransmitPacket func-
tion which is used by Virtual Choices to send a packet.
In turn our driver sends the packet after performing the
conversion routine detailed above to the Linux transmit
routine. The Linux routines rely on the netlink API to
transmit routines. We emulate the netlink API functions
which call the DLPI transmit routines to send the packets.
This was done since DLPI support is not provided in the
UML Ethernet driver since UML has not been ported to
Solaris.

4.3 Linux Device Drivers

Because the LKMA was added to Virtual Choices rather
than its native Sparc counterpart, Virtual Choices, there was
some difficulty in choosing the non-trivial drivers to adapt.
For the solution, we turned to User-Mode Linux. Like
Virtual Choices, User-Mode Linux is a user-level “kernel”
which simply runs on top of Linux. This allows Linux
developers a safe means to test portions of the kernel without
fear of detrimentally affecting their actual Linux kernel
executing on the native platform.

In a kernel, a driver is responsible for the following
minimal set of functionality:

� open: turning on and initializing hardware,
� write: passing data to the hardware.
� read: extracting data from the hardware.
� close: turning off hardware.

However, in the user-level os model, the concept of a
“driver” becomes something of a misnomer. At the user-
level, there is no direct access to the hardware. Instead, a
driver in a user-level kernel must simply interface with the
lower-level kernel. Thus, in the selection of Linux drivers to
adapt to Virtual-Choices, measures had to be taken to add
these kinds of user-level to kernel-level interfaces.

4.3.1 Ethernet

User-Mode Linux uses a virtual network to transmit and
receive Ethernet packets as it has no access to the host
networking. To do so, it can use a number of available
interfaces, one of which is the ethertap interface. Using
this interface, UML sends its Ethernet frames to user space
on /dev/tap0 and expects Ethernet frames to be written
back to it. As a result, the ethertap interface can be
viewed as a simple Ethernet device which receives packets
from user space rather than a network interface card (NIC).
The driver, ethertap.c, is used to support this networking
paradigm.
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Linux provides another interface, netlink, which is used
to transfer information between kernel modules and user-
space processes. It provides bi-directional communication
via a standard socket interface for user processes and an
API for kernel modules. This interface is used heavily in the
ethertap driver. For example, ethertap open() is simply
a driver call which opens a netlink interface and creates a
packet queue.

Moreover, the ethertap driver relies on the socket buffer,
sk buff. These are the buffers which the Linux kernel uses
to handle network packets. This datatype provides a very
rich functionality to pass network packets up and down the
network protocol stack. That is, sk buff is used to add or
remove the headers necessary at the ICMP, TCP, IP, and
other layers.

4.3.2 PS/2

As mentioned in earlier sections, adapting device drivers
to Virtual Choices that directly access the hardware poses
a challenge. We chose a simple PS/2 mouse driver to
study how a hardware device driver can be adapted by our
LKMAdapter. Given that this project’s focus is that of the
LKMA itself, we did not deem it necessary to design the
interface required for such an effort. Though not imple-
mented, this section makes some technical recommendations
to adapting this type of device driver to Virtual Choices.

The standard PS/2 mouse supports the following inputs
[9] : X-direction movement, Y-direction movement, left
button, middle button, and right button. The mouse reads
these inputs at a regular freqency and updates counters
and flags to reflect movement and button states. The
X-movement counter and the Y-movement counter along
with the state of the three mouse buttons, are sent to the
host in the form of a 3-byte movement data packet. The
movement counters represent the amount of movement that
has occurred since the last movment data packet was sent to
the host. There are other factors like resolution and scaling
that control the amount of movement, but those details does
not concern us.

A PS/2 mouse can operate in ”Reset”, ”Stream”, ”Re-
mote” or ”Wrap” mode. Reset mode is entered at power-up
or upon receiving the ”Reset” command. In stream mode,
the mouse sends movement data when it detects movement
or a change in state of one or more mouse buttons. The
maximum rate at which this data reporting may occur is
known as the sample rate. For simplicity, we consider only
the stream mode which is the default mode of operation.
This means that the simplest PS/2 mouse driver a) detects
the mouse at start-up b) handles I/O interrupt at the
”sample rate” to read in 3 bytes of movement data.

A Linux PS/2 mouse driver cannot be directly adapted
to Virtual Choices since any interrupts generated by the
mouse will be sent to the host kernel and will not be
captured by VirtualChoices. Since User-mode Linux (UML)
has similar handicaps regarding hardware access, we tried
to adapt a PS/2 driver that works with UML. We found
that UML also has unresolved issues in accessing physical
devices. As discussed in [8], two things must be considered
for hardware support in UML:

� I/O memory acces: Mapping I/O memory into a
process virtual address space. This would give a driver
access to the device’s memory and registers.

� Interrupts: Device interrupts need to be forwarded
to the user-mode driver. This could be done using a
stub driver in the native kernel which can probe for the
device at boot time. This driver would recognize the
device and provide some mechanism for the real user-
mode driver to gain access to it, such as an entry in
/proc or /dev. The user-mode driver would open that
file and make requests of the stub driver with calls
to ioctl. The file descriptor would also provide the
mechanism to forward interrupts from the stub driver
to the user-mode driver. The stub driver’s interrupt
routine would raise a SIGIO on the file descriptor.

Thus, implementing a PS/2 mouse driver in UML
requires:

1. A stub driver in the host kernel, ps2mousestub

2. A user mode driver for the UML kernel, ps2mouse.

The ps2mousestub is similar to a stub in remote pro-
cedure call. It presents the same interface to the host
kernel as a real PS/2 mouse driver. However, instead
of just interacting with the I/O subsystem, it acts as
a mediator between the device and the ps2mouse. For
example, when the mouse is clicked, ps2mousestub responds
to the interrupt, and generates a SIGIO to ps2mouse which
can then read the movement data. We infer that unlike
ps2mousestub which must be loaded at startup, ps2mouse
can be designed as an LKM.

Our LKMAdapter can adapt the user-mode driver,
ps2mouse as with any LKM. Prior to adaptation, the PS/2
interface must be known to Virtual Choices. This re-
quires creating a new class for Virtual Choices, VCps2mouse.
Adapting ps2mouse then requires mapping its interface
methods to corresponding methods in VCps2mouse.

To summarize, adapting a PS/2 mouse driver would
require considerable work involving Linux and UML as we
would have to first create ps2mousestub (for Linux) and
ps2mouse (for UML). Given that our focus is on the actual
adapter and the timeframe was limited, we left it at analysis
level.

4.4 The EthernetDriverLKM Adaptor

Any non-trivial Linux driver or module will require many
basic Linux kernel functions, such as kmalloc, kfree. These
are fairly easy to emulate, as they have direct equivalents in
the Choices kernel. However, in adapting the UML ethertap
driver, their were some additional special considerations that
had to be made. That is, there were some very non-trivial
Linux services and interfaces with no direct equivalent in
Choices. In particular, the fact that structures, or pointers
to structures, are commonly used to pass data around means
that our emulation functions have to know the same defini-
tions of those structures as were used when the Linux module
was compiled. When we reference objectrarrowfield, it must
point to the same location in memory as the Linux module.
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In order to write EthernetDriverLKM–the adaptor for
User Mode Linux’s ethertap driver–there are two major
structures that have to be defined, and their support-
ing functions implemented. The first of these is Linux’s
net device structure. This structure contains information
about the network device being driven, but most impor-
tantly it is used to pass function pointers from the LKM to
the kernel. The kernel then uses these function pointers to
call the routines provided by the LKM. We necessarily emu-
late this behavior in EthernetDriverLKM, providing, among
other things, a register netdev() emulation function that
receives the pointer to ethertap’s net device structure.

The second major Linux structure that EthernetDriverLKM
has to understand is the socket buffer structure known as
sk buff. There are many supporting functions that make
use of the sk buff structure but luckily most of these are
inline, and thus are compiled into the LKM, and don’t
have to be emulated. Nevertheless, sk buff presented a
challenge to our adaptor implementation. The socket buffer
structure is used in Linux to pass network packets up and
down the protocol stack, since each layer may need to add or
remove packet headers, the socket buffer is designed to easily
accommodate expansion and contraction at both ends. Of
course, Virtual Choices has its own protocol stack (though
they are called conduits), and thus the special capabilities of
sk buff are not useful to us. However, it means we have to
go through a conversion process, translating Virtual Choices
NetworkBuffer structures into Linux sk buff structures, and
back again whenever EthernetDriverLKM needs to get data
from, or put data into, ethertap.

To do transmission and reception, ethertap makes use
of the Linux netlink API. To do reception, it passes a
function pointer to netlink kernel create(), which sets up
an interrupt handler, to call the reception function whenever
a packet is received. Clearly, we needed to emulate this
function, using Virtual Choices interrupt handling. When
ethertap transmits a packet, it calls netlink broadcast().
We also had to emulate this function. The Data Link Packet
Interface (DLPI) was used to perform the actual reception
and transmission, since neither Virtual Choices nor the UML
ethertap module has access to actual hardware.

There were, of course, numerous other minor functions
and structures that had to be dealt with, but the above
mentioned items were the most challenging, and must fun-
damental to getting ethertap to work with Virtual Choices.

5 Code Documentation

The CVS repository for the Virtual Choices source base used
for this project is located at:

/usr/dcs/csil-projects/cs423/cs423g3/cvsroot.

The following files represent the actual implementation
of the LKMA. These files were created by our team unless
otherwise indicated.

� vcnew/FileSystems/

– BSDContainer.cc. Modified to incorporate
ELFContainer. BSD file system class.

– BSDInode.cc. Modified to incorporate ELFContainer.
BSD I-node file system class.

– ELFContainer.cc. ELF file parser.

– ELFDictionary.cc. Directory indexing class for
ELF files.

– ELFLoader.cc. ELF binary run-time linking and
relocation.

– FileSystemInterface.cc. Modified to incor-
porate ELFContainer and ELFDictionary. File
system requests are handled via this interface.

� vcnew/LKMAdaptors/

– HelloWorldLKM.cc. Example LKM adaptor class.

– EthernetDriverLKM.cc. Adaptor for ethertap.o,
UML ethernet LKM.

– LKMAdaptor.cc. LKMA base class. Provides the
basic adaptor functions and infrastructure.

� vcnew/MachineDependent/VChoices/

– dlwrap.c. provides SUN’s implementation of
DLPI API routines. DLPI has a request ac-
knowledge scheme for both data transfer and
configuration changes and this file abstracts this
REQ/ACK mechanism away from the systems
programmer

– VCEthernet.cc. Modified the Virtual Choices
Ethernet driver to use the DLPI implementation.

– VCVirtualEthernetDaemon.cc. Provides packet
transmit/receive functionality for Virtual Choices
instances on the same host.

� vcnew/Networks/Ethernet/

– EthernetAdministrator.cc. Modified to per-
form packet transmission using the DLPI imple-
mentation.

6 An Example

Adapting an LKM using the LKMA requires the following
steps.

1. Compile the LKM into ELF 32-bit format on a Sparc
host, lkm.o.

2. Copy the lkm.o file onto the Virtual Choices file
system.

3. Select the driver interface class appropriate to the
driver. For example, EthernetDriverLKM for ether-
tap.c.

4. Load the lkm.o and adapt it utilizing the appropriate
driver interface class.

What follows is an actual Virtual Choices session demon-
strating these steps. In the following case, the EthernetDriverLKM
is adapted, so the VCVirtualEthernetDaemon must be run
previous to running Choices.
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% cd vcnew/Configure/System/VChoices/

% VCEthernetDaemon &

Virtual ethernet daemon starting up.....

% Choices

Choices [Version 0.9 beta]

All rights reserved.

Information at http://choices.cs.uiuc.edu

This product includes software developed by

the University of California, Berkeley

and its contributors.

(additional output removed for brevity)

Enter path of binary executable application file:

cpon ethertap demo.o

(debug output removed for brevity)

Enter path of binary executable application file:

start EthernetDriverLKM ethertap.o

(debug output removed for brevity)

(packets are transmitted and received)

7 LKMA Evaluation

At the onset of LKMA development, we forecasted three
points as a measure of the adaptor’s success. We evaluate
the success of this project using these three points.

1. The ability of the adapter to translate an empty
driver that the Virtual Choices OS can successfully
load. The first driver adapted to Virtual Choices,
as presented in the midsemester demo, was a simple
“Hello World” driver, test.o. This driver had the two
fundamental calls, init module and cleanup module.
The LKMA successfully adapted this simple driver
and it was demonstrated to work in Virtual Choices.

2. The functionality of the Kernel Linux Modules.
The two drivers that were adapted for this project,
test.o and ethertap.o were both shown to function
in Virtual Choices. It was immediately apparent that
the adapted test.o worked given its simplicity. “Hello
World” was displayed on the screen. Ensuring that
the ethertap.o adaptation worked was not as trivial.
Using the packet sniffer ethereal, it was determined
that the Ethernet-level packets were successfully being
transmitted by the EthernetDriverLKM. Significant
effort was made to resuscitate the TCP/IP stack–the
Conduit class–in Virtual Choices as well as add an
ICMP layer, but this was not successful due to time
contraints.

3. The number of Loadable Kernel Modules adapted;
be it they are actually adapted, or valuable insights
are provided to doing so. In the early visions of this
project, it was projected that a number of adapted
drivers would be delivered at the semester’s end. How-
ever, due to the significant work involved in getting
Virtual Choices running, not much time was allowed

for this endeavor. However, the two drivers, test.o
and ethertap.o, were an effective demonstration of
the capabilities of the LKMA. Furthermore, the reader
may find valuable insights into adapting a mouse
driver to Virtual Choices in Section 4.3.2.

8 Contributions

This project made four significant contributions to Virtual
Choices. First, the Virtual Choices source base was updated
to work with current day C++ compilers. Though this
contribution was only ancillary to the main goals of LKMA
development, it was certainly necessary. However, this
contribution represents much of this semester’s work for this
project.

The second contribution was the ELFLoader class. For
the LKMA project, it replaced the legacy COFFLoader

class used by Virtual Choices to load its dynamic classes.
However, the COFF binary format is no longer a standard
for Sparc machines and Linux has long used the ELF format.
The ELFLoader improves Virtual Choices by enabling it to

The third contribution was updating the Virtual Choices
ethernet interface from NIC to DLPI. This allows Virtual
Choices to use its own VCEthernetDriver to transmit Eth-
ernet packets as well as for the adapted EthernetDriverLKM

to do the same.

The final contribution was the addition of the LKMA to
the Virtual Choices. The LKMA consists of an ELFLoader

and a set of classes used to adapt the device drivers. The
majority of the goals for the LKMA were met, saving the
multitude of drivers actually adapted. This signifies that a
framework now exists in which the rich resource of Linux
drivers can now be adapted to function in Virtual Choices,
thereby increasing the functionality of this research OS.
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