
Context Switch Overheads 

for Linux on ARM Platforms

Francis David fdavid@uiuc.edu

Jeffrey Carlyle jcarlyle@uiuc.edu

Roy Campbell rhc@uiuc.edu

http://choices.cs.uiuc.edu

mailto:fdavid@uiuc.edu
mailto:jcarlyle@uiuc.edu
mailto:rhc@uiuc.edu


Outline

 What is a Context Switch?
◦Overheads

◦Context switching in Linux

 Interrupt Handling Overheads
 ARM Experimentation Platform
 Context Switching

◦Experiment Setup

◦Results

 Interrupt Handling
◦Experiment Setup

◦Results



What is a Context Switch?

 Storing current processor state and 

restoring another

 Mechanism used for multi-tasking

 User-Kernel transition is only a 

processor mode switch and is not a 

context switch



Sources of Overhead

 Time spent in saving and restoring 

processor state

 Pollution of processor caches

 Switching between different processes

◦Virtual memory maps need to be switched

◦Synchronization of memory caches

 Paging



Context Switching in Linux

 Context switch can be implemented in 

userspace or in kernelspace

 New 2.6 kernels use Native POSIX 

Threading Library (NPTL)

 NPTL uses one-to-one mapping of 

userspace threads to kernel threads

 Our experiments use kernel 2.6.20



Outline

 What is a Context Switch?
◦Overheads

◦Context switching in Linux

 Interrupt Handling Overheads
 ARM Experimentation Platform
 Context Switching

◦Experiment Setup

◦Results

 Interrupt Handling
◦Experiment Setup

◦Results



Interrupt Handling

 Interruption of normal program flow

 Virtual memory maps not switched

 Also causes overheads

◦Save and restore of processor state

◦Perturbation of processor caches



Outline

 What is a Context Switch?
◦Overheads

◦Context switching in Linux

 Interrupt Handling Overheads
 ARM Experimentation Platform
 Context Switching

◦Experiment Setup

◦Results

 Interrupt Handling
◦Experiment Setup

◦Results



ARM Experimentation Platform

 Processor Core: ARM9 @ 120 MHz
 SoC: Texas Instruments OMAP1610
 Split (Harvard) Cache

◦Instruction: 16 KB, 4-Way

◦Data: 8KB, 4-Way

 Virtually Tagged Caches
 Address Translation Cache (TLB)

◦Instruction: 64 entries

◦Data: 64 entries

 Measurement clock resolution: 0.16 
microsecond 



Outline

 What is a Context Switch?
◦Overheads

◦Context switching in Linux

 Interrupt Handling Overheads
 ARM Experimentation Platform
 Context Switching

◦Experiment Setup

◦Results

 Interrupt Handling
◦Experiment Setup

◦Results



Context Switching Measurement

 Modified Kernel
◦Controlled environment

◦No interrupts

◦No system processes

 Pair of tasks using cooperative 
multitasking
◦Bubble sort (Duration: 3.6 seconds)

◦Deflate compression (Duration: 3.5 seconds)

◦AES encryption (Duration: 3.3 seconds)

◦CRC computation (Duration: 3.3 seconds)

 MMU switched and caches flushed



Context Switching Measurement

CnCRRI totaltotal )('

For n context switches with direct overhead C, the 

total indirect overhead



Sort and Deflate Compression



AES and CRC



Analysis

 Direct Overhead: 48 microseconds

 For 99 context switches

◦Max observed total overhead = 0.25%

◦Max observed indirect overhead = 0.18%

◦Indirect overhead > direct overhead



Indirect Overhead Breakdown

Sort-Deflate



Indirect Overhead Breakdown

AES-CRC



Analysis

 Execution Time Inflation due to 

Context Switching

◦AES & Deflate: Around 0.1%

◦Sort: Around 0.035%

◦CRC: Around 0.028%



Varying Dataset Size with Sort



Outline

 What is a Context Switch?
◦Overheads

◦Context switching in Linux

 Interrupt Handling Overheads
 ARM Experimentation Platform
 Context Switching

◦Experiment Setup

◦Results

 Interrupt Handling
◦Experiment Setup

◦Results



Interrupt Handling Measurement

 Modified kernel for controlled 

environment

 Only one task ïno context switching

 Only one interrupt enabled - timer

 Software triggered interrupt

 Study inflation in execution time of 

task with increasing number of 

interrupts



Interrupt Handling Measurement

If the direct overhead in servicing the timer interrupt is D, the

total indirect overhead is DnRRI tasktask

'



Sort Indirect Overhead



Analysis

 Indirect overhead for 49 interrupts

◦Sort ï0.01%

◦Deflate ï0.02%

◦AES ï0.09%

◦CRC ï0.05%



Compare to Context Switching

Indirect Overheads for 49 interruptions

Context Switching* Timer Interrupt*

Sort 2500 600

Deflate Compression 7000 1300

AES 6000 3000

CRC 1500 1500

*Approximate, in microseconds 



Related Work

 Ousterhout: Measured round trip token 
passing time through pipe

 lmbench: Eliminated syscall overhead
 HP Labs: Relationship between caches 

and context switching
 University of Virginia: Effect on branch 

predictors is minimal
 Faster Context Switching

◦Processor Feature ïFast Address Space 
Switching

◦Physically tagged caches ïARM11



Concluding Remarks

 Our context switch and interrupt 
measurements are performed at 
kernel level
◦Context Switch trend should reflect 

userspace switching closely

◦Interrupt handling effect should be 
identical for userspace tasks

 Code available on website

http://choices.cs.uiuc.edu



Context Switch Overheads 

for Linux on ARM Platforms

Francis David fdavid@uiuc.edu

Jeffrey Carlyle jcarlyle@uiuc.edu

Roy Campbell rhc@uiuc.edu

http://choices.cs.uiuc.edu

mailto:fdavid@uiuc.edu
mailto:jcarlyle@uiuc.edu
mailto:rhc@uiuc.edu


Measurement Bug


