
Security Enhanced MPEG Player
Yongcheng Li

�
Zhigang Chen See-Mong Tan Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield
Urbana, IL 61801

�
ycli,zchen,stan,roy � @cs.uiuc.edu

Abstract

Conventional cryptography deals with the encryption
and decryption of traditional textual data. The advent of
networked multimedia systems will make continuous me-
dia streams, such as real time audio and video, increasingly
pervasive in future computing and communications environ-
ments. It is thus important to secure networked continuous
media from potential eavesdroppers. In this paper, we con-
sider the process of real-time encryption and decryption for
video streams. We implement a software-only security en-
hanced MPEG player. The security enhanced player imple-
ments a protection hierarchy by specializing the encryption
scheme based on MPEG’s coding sequences. Encryption
may be performed on only I frames, I and P frames, on all
I, P and B frames. Increased protection incurs more over-
head as more encryption is done. Our security enhanced
MPEG player incurs small average overheads in terms of
achievable frame rate compared with the unmodified MPEG
player, depending on the MPEG frame size, encoding for-
mat, and encryption method used, with speeds fast enough
for most multimedia Internet applications. This is demon-
strated by its integration with Vosaic, a real time multimedia
World Wide Web browser. We also observe that increased
compression actually results in less cryptographical over-
head, due to the fact that more compression means less data,
as well as longer dependencies between MPEG frames. Our
work shows that video streams can also be encrypted and
decrypted while satisfying the real time requirements in the
present day Internet.

1. Introduction

In recent years, distributed systems security has been the
object of considerable research[11, 1, 3, 12, 10]. Many
distributed applications require information exchange over�

This work was supported by NSA grant 1-5-20369 MDA 904-94C-
6113.

insecure public channels. Private exchanges require protec-
tion from eavesdroppers. Secure information exchange is a
necessity in distributed systems, especially with the budding
of Internet commerce.

Encryption and decryption provide the basic technology
for building secure systems. There are two basic encryption
methods:�

Secret Key Encryption[4]:

A single key is used for both encryption and decryption.
Only authorized users possess the key.�
Public Key Encryption[6]:

Both a public key and a private key are used. In the
widely known RSA method, the keys are complemen-
tary: each key may unlock ciphertext created with the
other key. The public key is published and widely
disseminated, while the private key is kept secret.

Public key encryption alleviates the problem of key dis-
tribution. However, decryption in currently known public
key schemes is slower than in secret key schemes. Assum-
ing the plain text is much larger than an encryption key, a
compromise method is to encrypt the plain text to be deliv-
ered with a secret key, and to encrypt the secret key using the
receiver’s public key. The receiver can then quickly decrypt
the ciphertext after it decrypts the secret key with its private
key.

Security systems that have been developed in-
clude Kerberos[10], Riordan’s Internet Privacy Enhanced
Mail (PEM)[5], and Zimmerman’s Pretty Good Privacy
(PGP)[15, 16, 14] . Kerberos is an authentication system de-
signed by Miller and Neuman for open network computing
environments in MIT’s Project Athena. Riordan’s Inter-
net Privacy Enhanced Mail (RIPEM) is a implementation
of Privacy Enhanced Mail (PEM) which allows electronic
mail to have the four security facilities provided by PEM:
disclosure protection, originator authenticity, message in-
tegrity measures, and non-repudiation of origin. PGP by
Philip Zimmermann uses public-key encryption to protect

electronic mail and data files. PGP is full featured, fast,
with sophisticated key management, digital signatures, data
compression, and boasts good ergonomic design. It has also
been the subject of considerable legal controversy.

The systems surveyed above deal with the cryptography
of conventional textual data. The security problem of video
and audio streams has not been considered in their design.
This does not mean that video and audio streams do not
need security, on the contrary, many of them, such as per-
sonal video streams, video conferences, and collaborative
sensitive video data, require protection. While performance
is an issue with the encryption and decryption of conven-
tional textual data, it is more so with continuous media
streams. Since playing video is a real time task, encryption
and decryption cannot take too much time, otherwise system
performance will suffer. There is a dearth of existing studies
on the impact of secure encryption and decryption methods
on real time video streams.

In this paper, we present a secure video encoder and
player based on Berkeley’s Mpeg Player[7, 8] and Zim-
merman’s PGP. We were interested in seeing how far we
could go with embedding security in a video player, with a
software-only implementation. The measured performance
with our implementation is 25.28 frames per second (fps)
where the original MPEG player performs with 29.87 fps
for a video frame size of 160 � 120, and 11.03 fps compared
with 12.38 fps for a video frame size of 320 � 240. The
results show that video streams can also be secured without
excessive performance degradation.

The rest of this paper is organized as follows. In sec-
tion 2, we provide background on MPEG coding and PGP’s
encryption and decryption. In section 3, the implementa-
tion of our security enhanced MPEG player is described. In
section 4, we present our experimental results for decryp-
tion and playback. In section 5, we look at encryption at the
server end. In section 6, some observations into the relation-
ship between compression and cryptography are made and
analyzed. In section 7, we present the application of our en-
cryption and decryption scheme in Vosaic[13], a prototype
World Wide Web browser that incorporates real time video
and audio into Web hypertext pages. Finally, we summarize
our paper in section 8.

2. MPEG and PGP

One problem associated with the encryption and decryp-
tion of video streams is the real time requirement of time-
constrained continuous media. Video frames need to be
displayed at a certain fixed rate, measured in the number of
frames per second (fps). If decrypting a video stream takes
too much time, video playback will suffer when the player
cannot meet the frame rate requirements.

The goal of our approach was to investigate the best per-

formance achievable with a software-only implementation
utilizing readily available, standard software components.
We chose Mpeg Player as the client display and MPEG
decoding software as it is easily available. We based our
encryption and decryption methods on PGP software. Ex-
periments show that the display rates reached by our secu-
rity enhanced MPEG player is comparable with the original
MPEG player.

2.1. Mpeg Player

Mpeg Player[7, 8] implements MPEG-1, the ISO/IEC
standard for medium quality and medium bit rate video and
audio compression. Mpeg Player was developed at the
University of California at Berkeley. The compression ratio
of MPEG is in the range of 50 : 1 to 100 : 1, depending on
the image sequence type and the desired quality. The Mpeg
Player decoder can display a video stream at close to the
full frame rate of 30 fps on the platforms which we based
our experiments (Sun Sparcstation 10 and Silicon Graphics
Indy workstations).

I BPB B B I

Figure 1. Inter-frame dependencies for the
MPEG sequence IBBPBB.

MPEG encodes a video stream with three frame types:�
I-frames(intra-frames),�
P-frames (forward predicted frames), and�
B-frames (bi-directional predicted frames).

An I-frame is encoded as a single run-length encoded image
independent of any past or future frames. A P-frame is
encoded relative to the closest preceding reference frame
(I-frame or P-frame). A B-frame is encoded relative to
the closest preceding reference frame, the closest following
reference frame (I or P), or both frames. If an I-frames is
not decoded correctly, then all the following frames until
the next I-frame will not be decoded correctly. Figure 2.1
depicts the dependencies in a common MPEG sequence
IBBPBB.

A MPEG video stream is organized around a set of meta-
data codes:

1. Sequence start code

2. Group start code

2

3. Picture start codes (one I-frame and some P or B-
frames).

The group start code and the picture start code repeat until
finally a sequence end code is met. The start code metadata
is used for parsing the video stream. Figure 2 illustrates
the structure of an MPEG file as indicated by its metadata
codes.

2.2. PGP Software

Pretty Good Privacy combines the convenience of the
RSA public key cryptosystem with the speed of conven-
tional cryptography. It includes message digests for digital
signatures, data compression before encryption, good er-
gonomic design, and sophisticated key management[15].

Each time a message is encrypted, a session key is ran-
domly generated and used to encrypt the message. The ses-
sion key is encrypted using the recipient’s public key. The
input and output parameters of PGP functions are file names
or file descriptors: PGP reads a file, encrypts or decrypts
it, or signs the file. It can also generate public keys, and
add new public keys to a stored public-key file. PGP uses
the RSA algorithm for its public key scheme and the IDEA
algorithm for conventional secret key ciphering. Some ex-
tensions to PGP were added for video stream cryptography.
The extensions are detailed below.

3. Security Enhanced MPEG Player

A simple way to encrypt a video stream is to apply some
encryption scheme, such as that provided by PGP, on the
whole video file. The MPEG file can be used as an input file
to PGP, which then encrypts the MPEG file. The encrypted
MPEG file is decrypted before it is displayed by the MPEG
player. This works for some small video files where the
whole video file can be transmitted on a network and stored
at the receiver site before being displayed.

However, it is impractical to cache large video files at the
receiver before it is displayed. The retrieval of large video
files also imposes an unnecessary latency before playback
is begun. Real time playback of networked videos require
that videos be sent on-demand, and in real-time. In such
a situation, the video file cannot be encrypted as a whole.
Instead, it is incrementally encrypted.

3.1. Video Encryption with PGP

In our approach, we encrypt MPEG video files frame by
frame, as frames are independently encapsulated units of
MPEG files. Because PGP only deals with full files, we
extended it to deal with buffered frames. The following
functions were added to the original PGP distribution:

�
generate session key(key): a 24 byte random session
(IDEA) key is generated and returned.�
IDEA buffer(key, CRYPTO FLAG, inbuffer, outbuffer,
bufferlen): This function does the IDEA encryption
or decryption depending on the CRYPTO FLAG us-
ing key, the input message is stored in inbuffer and
encrypted or decrypted message is put in outbuffer.
Bufferlen specifies the input buffer length.�
encrypt buffer(public keys, inbuffer,
outbuffer, bufferlen): Encrypt the message in inbuffer
with length bufferlen using public key public keys and
output the result in outbuffer.�
decrypt buffer(inbuffer, outbuffer) Decrypt an en-
crypted message in inbuffer using one’s private key
and store the output in outbuffer.

Functions encrypt buffer and decrypt buffer are used to
encrypt and decrypt the random session key.

Sequence Start Code

Sequence End Code

Group Start Code

Group Start Code Picture Start Code Data DataPicture Start Code

Picture Start Code Data DataPicture Start Code

Figure 2. The structure of an MPEG file

In order to encrypt the MPEG file frame by frame, the
file is parsed. Figure 2 illustrates the structure of a MPEG
encoded file. The start codes are metadata that are used
to help decoding. We use them to extract the frames. The
sequencestart code and sequence end code is used to indicate
the beginning and the end of the file. The group start code
indicates the start of a group of frames. The picture start
code signals the beginning of a frame. The frame type is
included in the picture start code. Since the start codes have
no direct relation to the content of the video frames, they
are left unencrypted. This allows the decryption process to
parse the video stream in preparation for frame decryption.

3

3.2. Improving Performance Through a Protection
Hierarchy

The properties of the I, P, and B frames can help further
improve the encryption and decryption performance. Since
B frames depend on I or P frames, and P frames depend
on on the closest preceding I frame, we need only encrypt
the I frames while leaving the P and B frames untouched.
Without I frames, one cannot decode P and B frames.

However, the amount of information recoverable from
a P or B frame without the associated I frame depends on
the encoded video clip. The encoding pattern (i.e. IBBBP)
specifying what type of frame is to be used to encode each
source video frame is independent of the video’s content.
If the encoder is told to encode a source video frame as
a B or P at a scene transistion, the encoder will not be
able to detect any inter-frame dependencies, hence it will
encode the frame’s macroblocks (sub-parts of the frame) as
I macroblocks, which would be fully decodable. In a typical
MPEG video such as the Star Wars movie, scene transitions
occur on the average of once every 7 seconds[2]. Encoding
only the I frame would thus allow potential eavesdroppers
to recover an average of several frames every 7 seconds.

This scenario illustrates a tradeoff in MPEG video stream
cryptography between performance and security. A protec-
tion hierarchy is used where one may choose to encrypt

1. only I frames,

2. I and P frames, or

3. all I, P and B frames

in any video sequence. Stronger protection for securing
video sequences is thus achievable by choosing extra frame
types requiring encryption. Naturally, higher protection cor-
respond to higher overheads in decryption.

4. Decryption and Playback

We compare the performance of our security enhanced
MPEG player SE MPEG against the original MPEG player.
All experiments were performed on a Sun SPARCstation
10 machine, running Solaris version 2.4, with 32 MB of
memory. We ensured that the comparisons were done under
lightly loaded conditions. In this section, data is presented
as MPEG files that are stored and read locally from disk.
The local testing shows the maximum difference between
SE MPEG and original MPEG player. The MPEG files used
in our experiments are listed in Table 1. We experimented
with two different video frame sizes. The first is a small
clip at a size of 160 � 120. The second is larger and longer,
at 320 � 240. The MPEG coding pattern for both clips is
IPBBIBB.

File Name File Size (bytes) Frame Frame
(bytes) Number Size

renat.mpg 555297 351 160 � 120
orincsa.mpg 1708105 850 320 � 240

Table 1. MPEG files used in our experiments.

File Name Unen- Encrypt Encrypt Encrypt
crypted I,P,B I,P I

renat.mpg 29.87 23.10 24.10 25.28
orincsa.mpg 12.36 10.68 10.87 11.03

Table 2. Comparison of speed (fps) with the
original MPEG player against the SE MPEG
player with encryption on I, I and P, or I, P and
B frames.

Table 2 shows the experimental results for local files. The
data in the table are the average of ten runs. For the small
frame size video file, the original MPEG player has a display
speed of 29.87 frames per second on our SPARCstation.
When all the frames are encrypted, our SE MPEG player
has a display speed of 23.10 frames per second. When we
encrypt I and P frames, we obtained a display speed of 24.10
frames per second. If only the I frame is encrypted, our
SE MPEG player reaches a display speed of 25.28 frames
per second. Table 3 presents the experimental results in
terms of performance degradation over the original insecure
player.

The achieved frame rate with only I frames encrypted
did not differ substantially from the baseline, and had only
limited effect on the perceived video quality. Similar results
were obtained for the large frame size video file. With
decryption, the display speeds decreased from 12.34 fps
to 11.06, or 10.89, or 10.71 depending on what types of
frames were encrypted. The experimental data shows that
that video stream decryption does not dominate processing
time. Fast display speeds are achievable in our software-
only implementation of encrypted video streams.

File Name Performance Degradation (%)
I,P,B frames I,P frames I frames

renat.mpg 22.6 19.3 15.4
orincsa.mpg 13.6 12.1 10.7

Table 3. Percent performance degradation for
the protection hierarchy.

4

25.28 frames per second is fast enough for multimedia
Internet applications. In [9], Smith gives a series of Inter-
net experiments with Cyclic-UDP, a media-specific protocol
designed for current local and wide area Internet multimedia
applications.1 In Smith’s experiments, a rate of 17 frames
per second was needed in order to send a MPEG video se-
quence and with its associated audio from U.C. Berkeley to
Cornell University. In such a scenario, our encryption and
decryption operations will cause little performance degra-
dation.

5. Encryption and Transmission

There are two ways to encrypt a video stream. The first
is to encrypt the video stream in advance and then read
the encrypted video file from disk and transmit it over the
network to the client. The second way is to encrypt video
frames on-the-fly, with no encryption done beforehand. The
two methods trade off playback latency and CPU overhead
for per frame processing against one another. Encryption in
advance incurs no overhead in retrieving and transmitting
the video stream. However, the client must wait while the
whole video file is being encrypted. Doing the encryption
on-the-fly can remove this latency, but extra CPU time is
needed before each frame is sent out the network.

On-the-fly encryption also avoids the problem of trans-
mission errors causing a larger failure than would occur
if the error happened transmitting unencrypted frames. For
example, if an error occurs in a packet containing an I frame,
the frame is lost irrespective of whether it is encrypted or
not. If the whole file is encrypted, then losing any part of the
whole file requires retransmitting the piece lost, thus adding
to the latency before playback can begin.

Some experiments were done to show the effect of each
method. The machines used were Sun SPARCStation 10’s
running Solaris 2.4 as in the previous set of experiments.

5.1. Whole File Encryption

With our experiments, the time needed to encrypt a video
file is approximately one quarter of the total local displaying
time. That is, for an hour long video, 15 minutes are need
to encrypt the whole file. The time is reasonable since the
size of an hour long video stream is usually hundreds of
megabytes. Reading the file from the disk and then writing
it to the disk would have already taken a significant amount
of time. This scheme is usable in situations where clients
reserve a video and the server can use its idle time to encrypt
the video file.

1In Cyclic-UDP, high priority packets are given a better chance of
delivery by allowing more retransmissions of these packets if they are lost.

5.2. On-The-Fly Encryption

Frame Size B Frame P Frame I Frame
(ms) (ms) (ms)

160 � 120 2-4 12-15 18-22
320 � 240 2-4 12-15 36-44

Table 4. The encryption time of video frames.

In our study of the second method, we measured the time
encryption imposes on the server. We obtained encryption
times for the sample videos used in our experiments. This is
illustrated in table 4. The encryption time is 2 to 4 millisec-
onds, 12 to 15 milliseconds, and 18 to 22 milliseconds, and
36 to 144 milliseconds for B, P, small I and large I frames
respectively.

The experimental results showed smaller times than we
expected. We conjecture that this is a consequence of the
data being encrypted as it is being copied for transmission.
Thus the memory to memory copy would have masked the
overhead of encryption, and the processor cache would have
been primed before transmission.

For a MPEG file with frame pattern IPBBIBB, the aver-
age per frame encryption time is approximately 9 millisec-
onds. Then, conservatively assuming that the encryption
time is 10 milliseconds, a single server CPU can support
at most 10 video streams at a frame rate of 10 fps with the
encryption option on. If the server does not simultaneously
transmit multiple encrypted video streams, then on-the-fly
encryption is not a serious problem.

6. The Effect of MPEG Frame Pattern on Video
Cryptography Performance

An important factor affecting the display speed is the I, P,
B frame pattern in the MPEG file. The frame pattern for re-
nat.mpg and orincsa.mpg is IPBBIBB. The display speed is
increased when P or B frames are increased (corresponding
to a better compressed file). An extreme case is to generate a
MPEG file with all I frames. A separate experiment showed
that with such an extreme file, and a frame size 160 � 120,
a display speed of 17.09 fps can be reached without any
decryption operation. With encryption and decryption, the
video is displayed at a speed of 11.40 fps. Thus a 33 per-
cent performance degradation occurs because of intensive
computing.

We thus arrive at the following observation:

Observation
(Compression and Cryptography): MPEG video com-
pression and video cryptography go hand-in-hand: better

5

compression also reduces cryptographical overhead.

Compression allows less data to be forwarded, thus a
more highly compressed video stream will have less data to
encrypt and decrypt than a video stream that is less com-
pressed. This is intuitively obvious. In addition, because the
MPEG standard makes use of forward and bi-directionally
predicted frames, a more compressed video stream will have
longer dependencies between frames. I frames act like de-
cryption keys in the cryptographical sense. P and B frames
in an MPEG picture group depend on the I frame, and pos-
session of the I frame is necessary in order that the P and
B frames be correctly decoded. Encrypting an I frame has
more effect in MPEG groups that have more P and B frames
(ie. those that are more compressed).

This means that protecting a more compressed video
stream at any level of the protection hierarchy (ie. by en-
crypting I frames only, or I and P frames, or all I, P and B
frames) incurs less overhead in both encryption and decryp-
tion than the same video stream that is less compressed.

7. Application in Vosaic

We integrated our video encryption and decryption mech-
anism in Vosaic[13], a World Wide Web real time video and
audio browser. Vosaic, short for Video Mosaic, incorpo-
rates real time video and audio into standard hypertext pages
which are displayed in place. Video and audio transfers oc-
cur in real time; there is no file retrieval latency. A real time
protocol, called VDP, is used in Vosaic. VDP is specialized
for handling real time video over the WWW. VDP attempts
to reduce inter-frame jitter and dynamically adapts to the
client CPU load and network congestion.

To transmit securely a video stream over the internet, the
server must have the client’s public key. A random session
key is generated for each transmission. The random session
key is encrypted with the client’s public key and delivered
to the client first. The client uses its corresponding private
key to decrypt the random session key. The video stream is
encrypted with the session key and the client decrypts the
video with the session key. We performed a series of tests
comparing the performance of encrypted and non-encrypted
real time video streams in Vosaic. The VDP protocol adapts
to network conditions between the server and client, as well
as the client CPU load, by dropping frames at the server end
based on a closed-loop feedback scheme from the client.
The details are given in [13].

As VDP adapts to network and client load, the trans-
mitted frame rate varies according to prevailing condi-
tions. With the MPEG decoder built into Vosaic, a Vosaic
browser client can achieve a maximum decoding speed of 13
frames/second. The test environment saw video streamed
from a video server at the National Center for Supercom-

puting Applications (NSCA) to our laboratory. NCSA is on
the campus of our institution and connected by Ethernet to
the local campus LAN.

In our tests, unencrypted videos were displayed at rates
from 5 to 10 fps. Under these conditions, our experiments
showed no measurable difference between encrypted and
non-encrypted video streams. Indeed, there was no per-
ceivable difference in observed video quality between the
encrypted and unencrypted versions, nor was there a mea-
surable difference in displayed frame rates. Our software-
only video cryptography scheme does not cause measurable
frame rate degradation for an Internet multimedia applica-
tion like Vosaic.

8. Conclusion

Conventional cryptography has traditionally dealt with
textual data. We extended the PGP scheme and applied it
toward the cryptography of continuous video streams. A
security enhanced MPEG player was implemented based on
Berkeley’s Mpeg Player and the PGP software package.

MPEG video compression and video encryption are
closely linked. The new encryption scheme is specialized
for MPEG’s coding sequences and orders the level of pro-
tection provided in a hierarchy. Taking advantage of the
inter-frame dependencies in MPEG, one may choose to en-
crypt only I frames, I and P frames, or all I, P and B frames.
Increased protection is traded off against more overhead as
more encryption is done. We also observe that increased
compression actually results in less cryptographical over-
head, due to the fact that more compression means less data,
as well as longer dependencies between MPEG frames.

The highest display speed in our software-only imple-
mentation was measured at 25.28 frames per second. This
is fast enough for many Internet applications, such as Vo-
saic. Our experiments show that video streams can also
be encrypted and decrypted while satisfying the real time
playback requirement.

9. Acknowledgements

We thank our anonymous reviewers for providing in-
sightful comments.

References

[1] M. Blaze. Key management in an encryption file system. In
Proceedings of 1994 Summer USENIX, pages 27–35, Boston,
MA, June 1994.

[2] Chuck Kalmenek. Personal communication, February 1994.
[3] B. Lampson, M. Abadi, M. Burrows, and T. Wobber. Au-

thentication in distributed systems: theory and practice. In
Proceedings of 13th ACM Symposium on Operating Systems
Principles, pages 165–182, Pacific Grove, CA, Oct. 1991.

6

[4] N. B. of Standards. Data encryption standard. In Federal In-
formation Processing Standards Publication 46, Government
Printing Office, Washington D.C., 1977.

[5] M. Riordan. RIPEM user guide: for RIPEM version 2.1. (Re-
vised March 1995 for RIPEM 2.1 by J. Thomson) Available on
the WWW via ftp://ripem.msu.edu/pub/crypt/ripem/ripemps,
1993.

[6] R. Rivest, A. Shamir, and L. Adleman. A method of obtaining
digital signatures and public-key cryptosystems. CACM, Feb.
1978.

[7] L. Rowe, K. Patel, B. Smith, and K. Lin. MPEG video
in software: representation, transmission, and playback. In
Proceedings of High Speed Networking and Multimedia Com-
puting, IS&T/SPIE Symp. on Elec. Imaging Sci. & Tech., San
Jose, CA, Feb. 1994.

[8] L. Rowe and B. Smith. A continuous media play. In Pro-
ceedings of 3rd International Workshop on Network and OS
Support for Digital Audio and Video, San Diego, CA, Nov.
1992.

[9] B. Smith. Implementation techniques for continuour media
systems and applications. PH.D Thesis, Dept. of Computer
Science, University of California at Berkerley, 1993.

[10] J. Steiner, C. Neuman, and J. Schiller. Kerberos: an authen-
tication service for open network systems. In Proceedings of
USENIX Winter Conference, pages 191–202, Dallas, Texas,
Feb. 1988.

[11] J. Stewart. SunOS, C2, and Kerberos: a comparative review.
In Proceedings of UNIX Security Symposium III, pages 265–
284, Sept. 1992.

[12] T. Woo, R. Bindignavle, S. Su, and S. Lam. SNP: an interface
for secure network programming. In Proceedings of 1994
Summer USENIX, pages 45–58, Boston, MA, June 1994.

[13] Z. Chen, S. Tan, R. Campbell, and Y. Li. Real Time Video
and Audio in the World Wide Web. In Fourth Interna-
tional World Wide Web Conference, Boston, MA, Decem-
ber 1995. World Wide Web Organization. Also available via
http://choices.cs.uiuc.edu/research/Vosaic/vosaic2.html.

[14] P. Zimmermann. File formats used by PGP 2.6. Avail-
able on the WWW via ftp://ftp.pegasus.esprit.ec.org/pub/-
arne/pgformat.ps.gz, May 1993.

[15] P. Zimmermann. PGP user’s guide, Volume I: essential topics.
Available on the WWW via ftp://ftp.pegasus.esprit.ec.org/-
pub/arne/pgpdoc1.ps.gz, Oct. 1994.

[16] P. Zimmermann. PGP user’s guide, Volume II: special topics.
Available on the WWW via ftp://ftp.pegasus.esprit.ec.org/-
pub/arne/pgpdoc2.ps.gz, Oct. 1994.

7

