
Recovering from Operating System Crashes
Francis David

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, USA
Email: fdavid@uiuc.edu

Daniel Chen
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, USA

Email: dchen8@uiuc.edu

Abstract— When an operating system crashes and hangs, it
leaves the machine in an unusable state. All currently running
program state and data is lost. The usual solution is to reboot the
machine and restart user programs. However, it is possible that
after a crash, user program state and most operating system state
is still in memory and hopefully, not corrupted. In this project,
we use a watchdog timer to reset the processor on an operating
system crash. We have modified the Linux kernel and added
a recovery routine that is called instead of the normal boot up
function when the processor is reset by a watchdog. This resumes
execution of user processes after killing the process that was
executing when the watchdog fired. We have implemented this
on the ARM architecture and we use a periodic watchdog kick
thread to detect system crashes. If this thread is not scheduled
periodically, the watchdog reset initiates recovery.

I. INTRODUCTION

Reliability of computers is a very compelling requirement
in the modern world where significant parts of our lives are
governed by computer systems. Failures of large scale critical
computer controlled infrastructure like the power grid have
drastic effects on our way of life. Even small devices like
personal cellphones, which have evolved to a never before
seen level of complexity, need to be reliable because they
are being used to manage increasing amounts of personal
information. Operating systems provide a platform for users
to run applications, share and store information. Reliability of
operating systems is a topic that has been at the forefront of
research in Computer Science for several decades [15], [17],
[6], [11], [7].

There are several reasons why an operating system kernel
can crash. Buggy code, bit-flips of kernel data caused by
cosmic rays and faulty hardware can potentially cause a crash.
Operating system crashes can be classified into two categories.
Some crashes occur when the kernel detects that a serious
error has occured and voluntarily halts the processor. These
crashes are referred to as self-detectable crashes. Some crashes
occur when the system enters a state in which no useful work
is being performed and the kernel is unable to detect this
condition. This is possible when for example, an interrupt
service routine is in an infinite loop with interrupts turned
off. Another example is when a non-preemtible kernel thread
is in an infinite loop1. These types of crashes are referred to as
self-undetectable crashes. External devices such as watchdog

1Software-lockup detection is possible in the latest versions of Linux if
timer interrupts are still functional

timers and processor support techniques [12] are required to
detect such crashes.

It is accepted behavior that when an operating system
crashes, all currently running user programs and data in
volatile memory is lost and unrecoverable because the proces-
sor halts and the system needs to be rebooted. This is inspite
of the fact that all of this information is available in volatile
memory as long as there is no power failure. This paper
explores the possibility of recovering the operating system
using the contents of memory in order to resume execution
of user programs without any data loss.

In this paper, we address recovery of operating system
and user process state from self-undetectable crashes that are
detected by an external watchdog timer. The watchdog timer
is wired to the processor reset pin and asserts that pin on
a timeout. A processor reset disables the MMU, turns off
interrupts, and sets the program counter register to its reset
value (0x0 on ARM). Recovery proceeds by bypassing the
normal boot sequence and jumping to a recovery routine. The
recovery routine re-enables the MMU, re-initializes the timers,
kills the process that was running when the processor was
reset, and finally re-enters the operating system dispatcher.

The rest of this paper is organized as follows. Section II
describes our model for faults and our assumptions related to
fault-propagation. We present our implementation platform in
section III. Implementation details are presented sections IV
and V. Our simple evaluation is described in section VI. We
then present some related work in section VII and conclude
in section VIII

II. FAULT MODEL

The key to our recovery approach is exploiting the possi-
bility of recovering the system directly from the contents of
physical memory. This is motivated by the observation that the
contents of physical memory are not affected by a watchdog
induced reset of the processor. All user and kernel state is
still available in memory. Thus, if the fault which caused the
system hang is well contained, then recovery would simply
entail killing the faulty thread and continuing to operate with
the other non-faulty threads. For this reason, our operating
system recovery technique is designed to work when the
following conditions are true.

1) Errors are contained within the hanging kernel thread
2) Kernel task list is not corrupted



3) State of other kernel threads are not corrupted

The first assumption is reasonable for some kernel threads
that performs specific services and does not access other
data structures shared by other threads in the kernel space.
Examples of such kernel threads are device drivers. Since
the recovery of the system relies on continuing dispatching
other good threads in the system after recovery, the second
assumptions ensures the system can continue to operate after
removing the faulty thread. The third assumption is to ensure
the system is recovered to a stable and correct state. If other
kernel threads are corrupted, the system would likely crash
again.

III. DEVELOPMENT PLATFORM

The latest version of the Linux kernel at the start of this
project was linux-2.6.16.7. We based our code off this version
of the kernel. The target platform is the ARM processor based
Integrator [1] board emulated by QEMU [5]. The property of
memory preservation was initially observed on real hardware
based on the TI OMAP [2] platform. Our current build
environment is targeted for the Integrator.

The Integrator specification does not include a watchdog
timer. As shown in figure 2 we added a watchdog timer
modeled after the OMAP watchdog to the Integrator hardware
emulated in QEMU. Linux already includes a driver for the
OMAP watchdog. We used this same driver to manage the
new Integrator watchdog.

The memory map of the Integrator in figure 1 shows
the location of the bootloader, the compressed kernel and
the uncompressed kernel. It also shows the location of the
RAMdisk that stores the filesystem required by the kernel.

IV. DETECTION

Hangs in operating systems can be detected in both hard-
ware and in software. Software detection mechanisms, how-
ever, are not completely foolproof because they usually rely on
the working of the timer interrupt. If interrupts are disabled
when the system hangs, the software detection mechanisms
cannot detect the hang.

Hardware detection is possible using processor support
techniques like the Reconfigurable Reliability and Security
Engine (RSE) [12] or hardware watchdog timers.

For this project, we use a hardware watchdog for operat-
ing system hang detection. Processor reset by the hardware
watchdog also provides the benefit of a known reset state to
launch the recovery routine.

Linux provides a native soft-watchdog for hang detection.
It displays an “Oops” message if the watchdog thread has
not been scheduled for more than 10 seconds. A much
better scheme that detects hangs in software is based on
using processor performance counters to ensure progress of
user applications. This design is still being developed by
the DEPEND research group at the University of Illinois ar
Urbana-Champaign.

The OMAP watchdog timer described in section III is
controlled through memory mapped registers and requires

0x00000000
Bootloader

0x00008000

0x00800000

0x00400000

Uncompressed Kernel

Compressed Kernel

RAM-Disk

0x02000000

Control Flow

1

32

4

Fig. 1. Integrator Memory Map: 1-reset, 2-bootloader jumps to compressed
kernel, 3-jump to uncompressed kernel, 4-bypass normal boot for recovery

specific write patterns to enable and disable the watchdog.
The timeout period is configurable through a register write. A
watchdog kick involves writing to a memory mapped register
and this results in the timer reloading the timeout.

When recovery is enabled, we start the watchdog and spawn
a kernel thread which periodically kicks the watchdog. If there
is an error causing an infinite loop in some kernel thread
which is not preemptable, then the kernel thread that pings
the watchdog will not be scheduled, resulting in a watchdog
timeout which resets the processor. Once the processor resets,
the recovery routine will start.

Placing the watchdog kick in a kernel thread cannot detect

ARM 1026EJ-S
PROCESSOR

OMAP
WATCHDOG

RESET

Address and Data

Fig. 2. Integrator Watchdog Architecture

2



infinite loop in preemtable kernel threads. Preemptable threads
will be preempted even if infinite loops exist in the thread,
and thus the periodic watchdog kick thread would still be
scheduled. Adding progress indicators to all kernel threads
and monitoring them in the recovery subsystem allows cov-
erage for these type of errors as well. This can be done by
instrumenting each thread to indicate its progress by setting a
progress bit. These bits are periodically cleared and monitored
to ensure that all threads are setting it and thus making
progress. This is however not implemented in our work.

V. RECOVERY

When the watchdog timer resets the ARM processor, it
behaves similarly to when it is first powered on. Interrupts are
disabled, the MMU is disabled, the caches are disabled, and
the program counter is set to the value 0. On the Integrator, the
reset signal is also wired to the external interrupt controllers
and causes all interrupts to be disabled at these controllers as
well.

In order minimize data loss when the watchdog bites,
the processor cache is set to write-through. This impacts
performance significantly. Thus, this contributes to the cost
of increased reliability.

On the Integrator, a small bootloader is present at address
0. During a normal power-on, the bootloader first loads the
Linux kernel, which is usually stored on disk as a compressed
file, into RAM. It then jumps to the compressed kernel. The
compressed kernel has a header which uncompresses the rest
of the kernel to a machine dependent fixed location in physical
memory (0x8000 on ARM Integrator). The compressed kernel
is then discarded and the memory reclaimed. We modified
the bootloader so that on a processor reset, it does not re-
load the compressed kernel and instead jumps directly to
the uncompressed kernel in physical memory. An alternative
option that was also considered was to build the Linux kernel
with support for eXecute In Place and place it in non-
volatile memory instead of the bootloader. Eliminating the
bootloader in this case requires relaxed assumptions about
register contents and processor state in the kernel boot code.
However, we could not get an XIP kernel to run userspace
programs on the Integrator and we were unable to determine
a reason. Therefore, we used the smart bootloader approach
in order to jump back into Linux kernel code.

Once execution resumes at the beginning of “head.s” in the
Linux kernel, a check is performed to see if the current boot is
due to a watchdog reset or a normal power-on. If the reason
is a watchdog reset, the normal boot sequence is bypassed.
The MMU is turned back on in assembly code and a jump is
performed to the C function “recover kernel” in “init/main.c”.
This routine is responsible for all other recovery actions that
are performed.

Locks present a serious problem during recovery. If the
process that was interrupted by a watchdog reset was holding
locks, those locks will need to be released when the process is
killed. During the initial phase of our work, we realized this
problem when a process that was printing characters to the

console was interrupted by the watchdog reset. The recovery
routine was unable to print anything to the console because
the console lock was not released.

To solve this problem, we have built a framework to track
owners of locks and present the ability to forcibly unlock
locks held by any process. This allows us to unlock all
resources owned by the process that was deactivated. Tracking
lock owners is another source of overhead that affects our
implementation.

The recovery routine first unlocks all the locks held by the
process that was running when the watchdog timer reset was
issued. This process is tracked by a variable called “running”
which is updated whenever there is a context switch. It then
dequeues the task from the kernel runqueue so that it is never
scheduled again. The interrupt controllers are reprogrammed to
enable all interrupts that the kernel expects. Interrupts are then
renabled on the processor. The watchdog is re-enabled and
the process dispatcher is then started. The dispatcher resumes
execution of processes in the runqueue.

There are several possible scenarios which can cause recov-
ery to fail. Violations of any of the three conditions mentioned
in section II can result in a state of the system that our
design cannot recover from. For example, if a fault in a kernel
thread causes corruption of the list of tasks maintained by
the kernel, recovery is impossible because there is no way
to determine the user level state of the system. Simply not
scheduling a kernel thread that resulted in a hang is also
definitely not the best solution. Some kernel threads are critical
to the operation of the system. For example, “ksoftirqd” on
Linux is responsible for running interrupt bottom-halves. If
this thread dies or is no longer scheduled, interrupts cannot
be processed correctly by the kernel. “kswapd” is another
example of an important kernel thread that is critical to
the continued operation of the system. It is responsible for
managing memory paging to and from disk.

Our recovery framework is controllable from user space
applications through the proc virtual filesystem on Linux.
Entries in “/proc/sys/recovery” enable control of the watchdog
and recovery.

VI. EVALUATION

We did not have much time to perform a complete eval-
uation of our implementation. However, we have tested our
implementation with several manually inserted infinite loop
hangs inside several running non-critical kernel threads and
other dummy device driver threads. Our implementation was
able to recover the kernel for all of these manually inserted
hangs. These tests however, ensure that the conditions de-
scribed in section II are maintained. A more thorough evalua-
tion using fault-injection and/or real kernel bugs should paint
a much better picture of the extent of system recoverability
through our design.

We have demonstrated in class that our implementation is
able to recover from a hang in a a dummy device driver and
complete execution of the bzip2 uncompression algorithm,
producing correct output. We have also demonstrated to a

3



smaller subset of the class, the recovery of a vi editing session
after a kernel hang.

VII. RELATED WORK

The Microsoft Windows operating system allows roll-backs
to previous checkpoints of system configuration using a tool
called “System Restore”. If the system crashes repeatedly,
Windows can be booted in safe mode and a previous check-
point can be restored. This checkpointing is however only
limited to system configuration and checkpoints versions of
files. Unlike our work, it does not provide recoverability to
currently running user processes.

Researchers have explored recovery after operating system
crashes in many different ways. The recovery box approach [4]
uses a region of non-volatile memory to store application
specific state that is used when the system is restarted after a
crash. Recently, researchers at Rutgers have investigated the
use of intelligent network processors with support for Remote-
DMA in order to access the memory of a crashed system and
recover application state [16].

Checkpointing can also be used to recover from crashed
systems running in virtual machines. VMWare [3] and Xen [8]
provide mechanisms to checkpoint currently running operating
systems and restore them. When the operating system crashes,
the checkpoint can be restored and thus providing limited re-
covery. Compared to this approach which loses all information
after the checkpoint, our design can recover currently running
processes.

VIII. CONCLUSIONS

Recovering an operating system in the manner described
in this paper is controversial. The assumption of thread level
fault-containment is debatable and system recoverability after
the crash of a kernel thread is questionable as well.

We feel that our assumption of thread-level fault-
containment is not unreasonable because the same assumption
is made by the Linux kernel when it continues to operate
despite “Oopses” in the kernel, which are thread attributable
errors caused by serious faults like null-pointer dereferences.
The large user base of Linux and thousands of critical ker-
nel developers have not encountered any reason to change
this behavior. But there has been recent research into fault
propagation in the Linux kernel [10] that suggests that fault-
containment is important. It is possible to enforce containment
via mechanisms like Nooks [18]. But we have not yet had the
opportunity to study the behaviour of our design with such as
system.

Some application-independent kernel state can be recon-
structed by re-running kernel code. Some examples of such
state are interrupt management and physical memory layout
data structures. Reconstructing such data eliminates corruption
that might have occured before the crash.

After a crashing kernel thread is killed, through either an
Oops or through our recovery design, it is possible that the
system is still left in an unusable state because of corruption of
other state or because the thread is crucial to the functioning of

the OS. We feel that this is unacceptable from the viewpoint of
user applications. After a careful analysis of different classes
of kernel threads, we believe that recovery routines that are
thread specific will provide improved reliability. A framework
that allows threads to specify policies that govern recovery can
be used to tailor the recovery effort. For example, the policy
can specify a cleanup routine and request an automatic restart.
This thread-specific information could potentially increase the
chances of a successful recovery.

We have also explored solutions that can be adopted when
all attempts at recovery fail. It is possible to checkpoint
just user-process state to disk. This can be done in either
an application transparent [13], [9], [14] or aware manner.
This allows the operating system to start afresh and load all
checkpointed user processes from disk, thus ensuring fresh
kernel state.

As described in section V, supporting recovery through
a watchdog timer induced processor reset requires that the
processor caches are set to write-through. This has significant
impact on performance. A small change in the architecture
that provides a Non-Maskable Interrupt on the ARM that is
wired to the external watchdog can benefit our design greatly
by eliminating the the problem of losing cache contents and
other processor state. The NMI handler would then jump to
our recovery routine.

We intend to continue working on our current design
and perform a more thorough evaluation using fault-injection
studies. We have already modified QEMU to support injecting
faults into Linux and expect to perform several fault-injection
campaigns over the next couple of months. We expect to
learn more about fault propagation from these experiments
and evaluate the efficacy of our recovery approach.

IX. ACKNOWLEDGMENTS

We are thankful to Professor. Ravi Iyer for insightful
comments that helped shape the final version of our project
and report.

REFERENCES

[1] ARM Integrator Family. http://www.arm.com/miscPDFs/
8877.pdf.

[2] Texas Instruments OMAP Platform. http://focus.ti.com/
omap/docs/omaphomepage.tsp.

[3] VMWare. http://www.vmware.com.
[4] M. Baker and M. Sullivan. The Recovery Box: Using Fast Recovery to

Provide High Availability in the UNIX Environment. In USENIX, pages
31–44, Summer 1992.

[5] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX
Annual Technical Conference, FREENIX Track, 2005.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An Empirical
Study of Operating System Errors. In Symposium on Operating Systems
Principles, pages 73–88, 2001.

[7] P. J. Denning. Fault tolerant operating systems. ACM Comput. Surv.,
8(4):359–389, 1976.

[8] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the art of virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles,
October 2003.

[9] J. Duell, P. Hargrove, and E. Roman. The design and implementation of
berkeley lab’s linux checkpoint/restart. Technical Report LBNL-54941,
Lawrence Berkeley National Laboratory, 2003.

4



[10] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization of
linux kernel behavior under errors. dsn, 00:459, 2003.

[11] I. Lee and R. K. Iyer. Faults, Symptoms, and Software Fault Tolerance in
the Tandem GUARDIAN90 Operating System. In FTCS, pages 20–29,
1993.

[12] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu. An Architectural
Framework for Providing Reliability and Security Support. In DSN,
pages 585–594. IEEE Computer Society, 2004.

[13] E. Pinheiro. Truly-Transparent Checkpointing of Parallel Applications.
1998.

[14] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under Unix. In Usenix Winter Technical Conference,
pages 213–223, January 1995.

[15] B. Randell. Operating systems: The problems of performance and
reliability. In Proceedings of IFIP Congress 71 Volume 1, pages 281–
290, 1971.

[16] F. Sultan, A. Bohra, S. Smaldone, Y. Pan, P. Gallard, I. Neamtiu, and
L. Iftode. Recovering Internet Service Sessions from Operating System
Failures. IEEE Internet Computing, 9(2):17–27, 2005.

[17] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recovering
Device Drivers. In Symposium on Operating Systems Design and
Implementation, pages 1–16, 2004.

[18] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability
of commodity operating systems. In SOSP ’03: Proceedings of the
nineteenth ACM Symposium on Operating Systems Principles, pages
207–222, New York, NY, USA, 2003. ACM Press.

5


