
Recovering from Operating System Errors

Francis M. David, Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign
{fdavid,rhc}@uiuc.edu

Draft of 2006/09/18 10:00

Abstract
User applications and data in volatile memory are usu-
ally lost when an operating system crashes because of
errors caused by either hardware or software faults. This
is because most operating systems are designed to stop
operation when some internal errors are detected irre-
spective of the possibility that user data and applications
might still be intact and recoverable. Techniques like ex-
ception handling, code reloading, operating system com-
ponent isolation, micro-rebooting, automatic system ser-
vice restarts and watchdog timer based recovery can be
combined together to attempt recovery of an operating
system from a wide variety of errors. Initial experiments
show that it is possible to continue running user appli-
cations after transparently recovering the operating sys-
tem. In cases where transparent recovery is not possible,
process-level recovery can be attempted as a last resort.

1 Introduction
The reliability of computer systems is an increasingly
important issue in the modern world. Complex computer
systems govern most of our daily lives. The operating
systems that manage critical applications on these com-
puters need to cope with a growing number of software
bugs, malicious attacks and hardware faults. Resilience
to errors is an important requirement of modern oper-
ating systems. The serious nature of this problem has
fueled significant amounts of recent research [1, 2, 3].

When most operating systems encounter critical er-
rors in hardware or software, they shut themselves down
and have to be rebooted, resulting in a loss of currently
running user applications and data. This behavior is un-
acceptable because the user is only concerned with ap-
plication data, which might still be intact and recover-
able. This paper explores changing this fail-stop behav-
ior to allow for recovery of the system, at least partially,
in order to prevent loss of user data.

Our goal is to recover an operating system (OS) trans-
parently to user applications after an internal failure. In
this paper, we present a set of error detection and re-
covery techniques that can be easily implemented to im-

prove the reliability of an OS. Increased developer con-
trol over error handling using language supported ex-
ception handling, code reloading, OS component iso-
lation, component micro-reboots, automatic system ser-
vice restarts and watchdog based recovery allow an OS
to recover from a wide variety of errors. A process-level
recovery procedure which recovers individual user pro-
cess state can be used as a last resort when all other at-
tempts at transparent recovery fail.

In our experiments, we only consider detectable errors
in OS code. For example, null-pointer dereference errors
usually cause a processor interrupt. Processor interrupts
normally signal errors due to memory alignment, invalid
opcodes and virtual memory access control which can
be due to hardware or software faults. Some OS errors
such as entering infinite loops with interrupts disabled
result in the system continuing to run without perform-
ing any useful work. Such errors can also be detected
using external hardware such as watchdog timers.

Is the state of the system correct after recovering from
an OS error? Some types of errors are simple, easily
detected and fixed by techniques such as code reload-
ing. The system is restored to a correct state in these
cases. Because of the nature of some complex errors,
and unknown extents of propagation, it is not possible
to guarantee correctness of the system after recovering
from them. But this should not be a deterrent to at-
tempting recovery. For example, in the Linux kernel a
kernel error condition known as an “Oops” is usually re-
solved by terminating the process that encountered the
error and only halts the system if an interrupt is being
serviced. The Linux kernel thus assumes process-level
fault containment which is not enforced and may not be
valid. Our recovery techniques make similar reasonable
assumptions about errors and only recover correctly for
the fault models they are designed to handle. Neverthe-
less, after recovering from an error, we advocate notifi-
cation to the user that the system might be unstable and
should be restarted after saving work.

Our research is currently targeted at the reliability of
mobile devices and our ideas have been implemented on

1



prototype cellphone hardware based on the ARM archi-
tecture; however, our recovery solutions are not archi-
tecture specific and are generic and widely applicable.
We have implemented and evaluated our recovery tech-
niques in the Choices objected-oriented research OS [4].
We have also implemented watchdog based recovery and
process-level recovery in Linux.

The remainder of this paper is organized as follows.
Section 2 presents techniques for detection and recovery.
We evaluate some of these techniques in section 3. We
briefly discuss related work in section 4 and conclude in
section 5.

2 OS Error Management Techniques

2.1 Exception handling
Choices has support for mapping processor exceptions
to C++ language exceptions [5]. This allows system de-
velopers to write code to handle errors like null pointer
dereferences and illegal opcodes in the OS using the
C++ “catch” construct. Converting system errors into
language exceptions and allowing them to be handled
by system code provides developers a flexible and pow-
erful technique to manage errors. Instead of providing
generic handlers that just print out an error message (ker-
nel panic, blue screen) and halt the system, local excep-
tion handlers can provide a more appropriate response
and attempt to recover the system.

Researchers have also worked on adding exception
handling support to the Linux kernel [6]. Our previous
research has shown that if the compiler implements ex-
ception handling using modern table-based techniques,
there is no noticeable impact on performance.

2.2 Code reloading
Transient memory faults (bit-flips) or memory corrup-
tion because of faulty code can cause errors such as in-
valid instructions in system code. While ECC memory
can help detect and fix some transient bit errors, it can-
not detect memory corruption errors caused by program
execution. Code reloading is a simple and effective tech-
nique that can be used to fix such errors in OS code.
The recovery strategy involves reloading the erroneous
memory word from stable storage such as disk or other
non-volatile memory such as flash. If the error is perma-
nent (this can be discovered by testing), it might still be
possible to recover by remapping the affected hardware
page using virtual memory support.

In Choices, if an undefined instruction is encoun-
tered, the exception handler reloads the instruction from
memory-mapped flash and the newly loaded instruction
is executed. This recovery strategy is simple to imple-
ment; but, it cannot detect memory corruption that re-
sults in an opcode changing to another valid opcode.

Periodic code checking can be used to improve de-
tection of memory faults. Hashing and checksums can
easily be used to verify signatures of running code and
trigger a reload if a fault is detected. This is a preemptive
approach and can detect faults before they cause errors.
This approach can also detect memory faults that cause
an opcode to change to another valid opcode. Choices
computes periodic CRC-32 checksums of critical ker-
nel code and ensures that instruction memory has not
been corrupted. If a checksum fails, the corresponding
block is reloaded from flash. The instruction cache is
then flushed to ensure that any cached corrupted instruc-
tions are eliminated. A code checksum may also be per-
formed immediately after an OS error to ensure that the
system code and recovery code is intact.

2.3 Component isolation
Component isolation helps contain the propagation of a
fault. If the fault is contained within a component, recov-
ery from any manifested errors can be targeted toward
the affected component. This technique has been inves-
tigated for monolithic operating systems by the Nooks
project [1, 2] using virtual memory based isolation. This
property is inherent for micro-kernel operating systems.

We have implemented support for component isola-
tion using virtual memory protection in Choices. Iso-
lated components are provided with read-write access to
defined memory regions which include a stack, a private
heap and designated memory mapped hardware. The
rest of the kernel is marked read-only and is therefore
secure from corruption caused by errors in the compo-
nent. Unlike the Nooks approach, we execute untrusted
components with user privileges for increased security.

Components are encapsulated by classes in Choices
and our implementation uses wrapper objects to man-
age switching in and out of isolation mode. This mini-
mizes the code that needs to be changed in the compo-
nents. Wrapper objects use multiple inheritance; they
inherit generic isolation code from a wrapper base class
for code reuse and they also inherit from the wrapped
class in order to impersonate it to the rest of the OS.

We have implemented component isolation for sev-
eral drivers in Choices. The console driver in Choices
has been replaced with a wrapper that provides isola-
tion and delegates work to the real console driver. This
required no changes to the original driver. The watch-
dog timer driver has also been implemented as an iso-
lated component. The isolation properties have been
verified using various common hand-written program-
ming errors. Component isolation only provides fault-
containment. Any error encountered while executing
the isolated component causes an exception to be raised.
Recovery would require that the exception is appropri-
ately handled.

2



2.4 Component micro-rebooting
Micro-reboot has been shown to be an effective recovery
technique for application programs [7]. Applying this
technique to operating systems is also feasible and can
help recover from transient hardware faults and some
software bugs. In the Nooks project, micro-reboots in
the form of extension restarts were originally used to re-
cover the Linux kernel. In Choices, a micro-reboot in-
volves reinitializing the affected component or destroy-
ing and re-creating it and then retrying the request to the
component. Micro-rebooting in Choices is supported by
the exception handling framework. While code reload-
ing only fixes errors in processor instructions, a micro-
reboot fixes errors in kernel data structures.

The fault model for this technique is component level
fault containment which can be partially enforced by
component isolation.

2.5 Automatic service restarts
When a critical OS service such as the paging daemon
fails, it grinds the system to a halt. If the failure of
such an important process is detected, a simple restart
may ensure the continued operation of the OS. The fault
model assumed by this technique is single process fail-
ure with no external state corruption.

In micro-kernel operating systems, this essentially in-
volves detecting and restarting failed system services
which are run as user processes. For example, in
MINIX3 [3], this job is performed by the reincarnation
server. In Choices, a system process can be created
so that it is automatically restarted if it encounters an
unhandled exception. The process dispatcher is a spe-
cial system process that loops continuously waiting for
a ready process and yields to the new process. If the
process dispatcher crashes, the system is rendered un-
usable. Therefore, in Choices the process dispatcher is
implemented as a restartable process that is always re-
covered if it crashes.

Restarting a system process that uses locks to access
shared data structures will not be successful if the pro-
cess dies holding locks. Assuming that the shared data
structures are not corrupted or that they can be checked
for correctness and fixed [8], system recovery is only
possible if all held locks are released. For this reason,
Choices tracks all locks held by a process and forcibly
releases any held locks when a process is terminated. We
have also implemented lock tracking and forced unlock-
ing for some types of Linux locks.

2.6 Watchdog-based recovery
External watchdog timers are used to detect errors where
the OS is not performing any useful work and is in an in-
finite loop. A watchdog timer has to be periodically re-
set (kicked) by the OS and will raise an interrupt to the

processor (bite) if the timer expires. Watchdog timers
are normally wired to the reset pin on the processor and
cause a full reboot of the system for recovery. Unfor-
tunately, a reboot of the system results in a loss of user
data and applications currently in memory.

By taking advantage of the fact that volatile memory
is still preserved after a processor reset, we can recon-
struct both OS and user state and continue to execute
even after the reset. This novel approach avoids com-
plete loss of user data and results in increased reliability.

We have implemented watchdog-based recovery in
both Linux and Choices. The Linux implementation
was part of a course project and was based on the lat-
est version of the kernel (2.6.16.7) at the start of the
project. When the watchdog bites, the processor, the
memory management unit (MMU) and interrupt subsys-
tem are reset and all registers are lost. Our modified
reset handler skips the normal boot sequence if the reset
is initiated by a watchdog timer. The handler turns the
MMU back on, deactivates the process that was running
when the reset was issued, reinitializes the interrupts and
jumps to the operating system’s process dispatch loop,
which picks up the next ready process and runs it. The
only information that is lost is the state of the process (in
registers) that was running when the processor was reset.
This process cannot be scheduled again and is removed
from the process queue. The fault model assumed by
this technique is also single process failure with no ex-
ternal state corruption. Watchdog recovery makes use of
the lock tracking code described in the previous section
to release shared resources held by the process that is
deactivated.

An external watchdog interrupt can be translated
to a SystemProcessNotResponding exception and dis-
patched to a software handler if the interrupt is wired to a
NMI (Non-Maskable Interrupt) processor pin. Our cur-
rent implementation cannot use exceptions for watchdog
interrupts because the watchdog interrupt on our ARM
hardware causes a processor reset and loss of the stack
pointer register which is required for exception propaga-
tion. A processor reset also results in the loss of the data
cache. Thus, if the watchdog is wired to the reset pin,
enabling recovery has a serious impact on performance
because normal execution cannot use the data cache.

2.7 Process-level recovery
If transparent recovery is not possible, or if the recov-
ery process itself encounters errors, individual process
state can be saved to stable storage as a last resort. Af-
ter user processes are saved, a normal full reboot may
be attempted and the state of the processes can be re-
stored on the computer. This ensures that all user data is
not lost when the error only affects a few applications or
irrelevant OS state.

3



This only requires minimal support from the OS - a
functioning non-volatile storage driver and user process
state management code. These can be reloaded from sta-
ble storage if their integrity is in doubt. This can be eas-
ily implemented in Linux with process state checkpoint-
ing software [9, 10]. We have included support from
the CRAK project [11] for checkpointing all user pro-
cesses in the Linux kernel. The processes can be se-
lectively restored after a reboot. Currently, the code re-
quires the user to issue an explicit process save request.
Ideally, this should be automatically done after attempts
at transparent recovery have failed. Choices does not yet
include support for process-level recovery.

The fault model addressed by this recovery technique
is arbitrary OS corruption not affecting user process state
and process recovery code.

3 Evaluation
All of the proposed recovery extensions have been im-
plemented on the Texas Instruments OMAP1610 H2
prototype cellphone hardware and also on a virtual hard-
ware platform based on the ARM Integrator board emu-
lated by the QEMU [12] software. In order to perform
some fault injection studies, we built a fault injector
based on QEMU capable of injecting faults into mem-
ory, hardware registers and raising processor exceptions.
In this section, we describe our initial experiences with
code-reloading, automatic restarts and watchdog based
recovery. The effectiveness of the other techniques has
been explored previously [1, 2, 7] and is not discussed
here because of space constraints.

To test the effectiveness of code-reloading, we in-
jected 100 random memory corruption faults into CRC
monitored regions holding Choices interrupt vectors and
handling code. This simulates errors due to transient
memory bit-flips or software bugs in drivers. 85 faults
were corrected by the periodic CRC checking support,
avoiding a possible future failure. 4 of the faults caused
an undefined instruction interrupt and were automati-
cally corrected. Only 11 faults caused a kernel crash.
These crashes occured because errors were encountered
before the periodic (5 seconds) CRC check could fix the
faults. This shows that code-reloading is an extremely
effective technique in reducing the number of faults that
can be attributed to corrupted OS code.

Automatic process restarts, especially when applied
to critical kernel processes also provide significant im-
provements in reliability. In a fault injection experiment
that was performed 1000 times, random processor ex-
ceptions were introduced while the process dispatcher
was running. We found that automatically restarting the
dispatcher resulted in recovery 78.9% of the time. The
failures are due to exceptions being raised during up-
dates to critical data structures, thus causing corruption.

Our Linux watchdog recovery implementation was
tested by manually writing a device driver that spawns
a buggy kernel thread. The introduced bug causes the
thread to eventually enter into a state in which it en-
ters an infinite loop with interrupts turned off. Without
an external watchdog, this causes the kernel to lock up
and hangs the system. One of our tests consists of a
script that runs the bzip2 decompression algorithm on a
compressed file as a user process and instructs the de-
vice driver to spawn the buggy kernel thread. The de-
compression is interrupted by the buggy thread which
crashes the kernel. With watchdog based recovery sup-
port turned on, the kernel recovers as soon as the proces-
sor is reset and the decompression runs to completion.
In all of our experiments, the decompression was veri-
fied to be correct. In another test, we cause the kernel
to crash after allowing a user to open a text editor and
start to type text into it. With watchdog based recovery,
the kernel is able to recover after the processor reset and
the user is able to continue editing the text and is even-
tually able to save the file to stable storage. It should be
noted that the recovery is perfect in these cases because
the bug does not corrupt external kernel state. Similar
experiments in Choices also result in complete recovery
after a kernel hang. These experiments demonstrate that
it is possible to recover an OS that has hung because of
a kernel level infinite loop and continue to run user pro-
cesses.

4 Related Work

There is a plethora of work in hardware and software
fault-tolerance that we are unable to discuss in this short
paper. We instead highlight some directly related work
in application recovery after OS crashes. The recovery
box approach [13] uses non-volatile memory to store
application state that is restored when the system is
restarted after a crash. Researchers at Rutgers have used
remote-DMA in order to access the memory of a crashed
system and recover application state [14].

Checkpointing can be used to recover from crashed
systems running in virtual machines. VMWare and
Xen [15] provide mechanisms to checkpoint running op-
erating systems and restore them. When the OS crashes,
the checkpoint can be restored, thus providing limited
recovery. Compared to this approach which loses all in-
formation after the checkpoint, our recovery techniques
attempt to recover currently running processes.

Self-checking code has been used to detect changes to
running user applications [16]. There is also some work
in detecting infinite loop errors in OS code using exper-
imental processor extensions [17]; however, recovery is
not addressed.

4



5 Conclusions and Future Work

Our experiments demonstrate that it is possible to in-
crease the reliability of operating systems through sim-
ple and effective techniques such as code reloading,
component isolation and automatic restarts. With the
addition of external watchdog hardware support, it is
also possible to detect and attempt recovery from sys-
tem hangs that would otherwise remained undetected.

While micro-kernels are well suited for fault-tolerant
operation because of their architecture with inherent iso-
lation, it is also possible to reap similar benefits in a
monolithic kernel through careful design.

The generic recovery techniques described in this
paper can be improved by incorporating support for
a framework that allows the use of developer speci-
fied policies that govern recovery actions on a case-
by-case basis. We have experimented with some rudi-
mentary support for specifying simple policies like retry
counts for micro-reboots and automatically restartable
processes. But there is a need for the ability to spec-
ify more complex recovery actions that can take into
account dependencies and OS state checking routines.
This design could potentially increase the chances of a
successful recovery.

More details, reports and code related to our
implementations of the recovery techniques
described in this paper and the code for the
QEMU based fault injector are available online at
http://choices.cs.uiuc.edu/.

6 Acknowledgments

Part of this research was made possible by a grant from
DoCoMo Labs USA and generous support from Texas
Instruments. We would also like to thank Professor
Ravishankar K. Iyer for helpful discussions during his
class on fault-tolerant systems. Daniel Chen helped
implement part of the Linux recovery code. Ganesh
Bikshandi, Jia Guo and Justin Trobec helped imple-
ment parts of the component isolation code in Choices.
Ramkumar Vadali and Shankar Kalyanaraman helped
integrate code from CRAK for checkpointing user pro-
cesses in the Linux kernel.

References
[1] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.

Improving the Reliability of Commodity Operating Sys-
tems. In Proceedings of the nineteenth ACM Symposium
on Operating Systems Principles, pages 207–222, New
York, NY, USA, 2003. ACM Press.

[2] Michael M. Swift, Muthukaruppan Annamalai, Brian N.
Bershad, and Henry M. Levy. Recovering Device
Drivers. In Symposium on Operating Systems Design and
Implementation, pages 1–16, 2004.

[3] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert
Bos. Can we make operating systems reliable and se-
cure? Computer, 39(5):44–51, 2006.

[4] R. H. Campbell, G. M. Johnston, and V. Russo. “Choices
(Class Hierarchical Open Interface for Custom Em-
bedded Systems)”. ACM Operating Systems Review,
21(3):9–17, July 1987.

[5] Francis M. David, Jeffrey C. Carlyle, Ellick M. Chan,
David K. Raila, and Roy H. Campbell. Exception Han-
dling in the Choices Operating System. Lecture Notes in
Computer Science. Springer-Verlag Inc., New York, NY,
USA, 2006.

[6] Halldor Isak Glyfason and Gisli Hjalmtysson. Excep-
tional Kernel: Using C++ Exceptions in the Linux Ker-
nel. October 2004.

[7] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, and Armando Fox. Microreboot – A Tech-
nique for Cheap Recovery. In Symposium on Operating
Systems Design and Implementation, San Francisco, CA,
December 2004.

[8] B. Demsky and M. Rinard. Automatic Data Structure
Repair for Self-Healing Systems. In Proceedings of the
First Workshop on Algorithms and Architectures for Self-
Managed Systems, San Diego, California, June 2003.

[9] Eduardo Pinheiro. Truly-Transparent Checkpointing of
Parallel Applications. 1998.

[10] J. Duell, P. Hargrove, and E. Roman. The design and im-
plementation of berkeley lab’s linux checkpoint/restart.
Technical Report LBNL-54941, Lawrence Berkeley Na-
tional Laboratory, 2003.

[11] Hua Zhong and Jason Nieh. CRAK: Linux Check-
point/Restart as a Kernel Module. Technical Report
CUCS-014-01, Columbia University, November 2002.

[12] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In USENIX Annual Technical Conference,
FREENIX Track, 2005.

[13] Mary Baker and Mark Sullivan. The Recovery Box: Us-
ing Fast Recovery to Provide High Availability in the
UNIX Environment. In USENIX, pages 31–44, Summer
1992.

[14] Florin Sultan, Aniruddha Bohra, Stephen Smaldone,
Yufei Pan, Pascal Gallard, Iulian Neamtiu, and Liviu
Iftode. Recovering Internet Service Sessions from Op-
erating System Failures. IEEE Internet Computing,
9(2):17–27, 2005.

[15] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
art of virtualization. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles, October 2003.

[16] Bill Horne, Lesley R. Matheson, Casey Sheehan, and
Robert Endre Tarjan. Dynamic self-checking techniques
for improved tamper resistance. In Digital Rights Man-
agement Workshop, pages 141–159, 2001.

[17] Nithin Nakka, Zbigniew Kalbarczyk, Ravishankar K.
Iyer, and Jun Xu. An Architectural Framework for Pro-
viding Reliability and Security Support. In DSN, pages
585–594. IEEE Computer Society, 2004.

5

http://choices.cs.uiuc.edu/

