
Building a Self-Healing Operating System

Francis M. David, Roy H. Campbell

Department of Computer Science

University of Illinois at Urbana-Champaign

201 N Goodwin Ave, Urbana, IL 61801

{fdavid,rhc}@uiuc.edu

Abstract

User applications and data in volatile memory are usu-

ally lost when an operating system crashes because of er-

rors caused by either hardware or software faults. This

is because most operating systems are designed to stop

working when some internal errors are detected despite

the possibility that user data and applications might still

be intact and recoverable. Techniques like exception han-

dling, code reloading, operating system component isola-

tion, micro-rebooting, automatic system service restarts,

watchdog timer based recovery and transactional compo-

nents can be applied to attempt self-healing of an operating

system from a wide variety of errors. Fault injection exper-

iments show that these techniques can be used to continue

running user applications after transparently recovering the

operating system in a large percentage of cases. In cases

where transparent recovery is not possible, individual pro-

cess recovery can be attempted as a last resort.

1 Introduction

The reliability of computer systems is an increasingly

important issue in the modern world. Complex computer

systems govern most of our daily lives. The operating sys-

tems that manage critical applications on these computers

need to cope with a growing number of software bugs, ma-

licious attacks and hardware faults. Resilience to errors

is an important requirement of modern operating systems.

The serious nature of this problem has fueled significant

amounts of recent research [33, 32, 34].

When most operating systems encounter critical errors in

hardware or software, they immediately stop operation, re-

sulting in a loss of currently running user applications and

data. Windows blue screen errors [5] and kernel panics in

UNIX systems are well known examples of such behav-

ior. We argue that this is unacceptable because the user

is only concerned with applications and associated data,

which might still be intact and recoverable. This paper ex-

plores changing this fail-stop behavior to allow for the sys-

tem to heal itself, at least partially, in order to prevent loss

of user data.

Our goal is to recover an operating system (OS) trans-

parently to user applications after an internal failure. In this

paper, we present and evaluate a set of error detection and

recovery techniques that can be used to provide self-healing

support to an OS.

Several approaches may be used to detect OS errors.

Some errors in an OS are detected and signaled [2] by the

processor. Processor exceptions normally signal errors such

as incorrect memory alignment, invalid opcodes and virtual

memory access control violations. These errors can be due

to hardware or software faults. OS errors such as enter-

ing infinite loops with interrupts disabled result in the sys-

tem continuing to run without performing any useful work.

Such lockup errors can only be detected using external hard-

ware such as watchdog timers. Lockup causing bugs also

occur often in OS code. More than 30% of the bugs in

Linux discovered by Chou et al. [10] were bugs that could

potentially cause a lockup.

Increased developer control over error handling using

language supported exception handling, code reloading, OS

component isolation, component micro-reboots, automatic

system service restarts, watchdog based recovery and trans-

actional components allow an OS to recover from a wide

variety of errors. A process-level recovery approach which

recovers individual user process state can be used as a last

resort when all other attempts at transparent recovery fail. A

classification of the error management techniques described

in this paper is shown in figure 1.

Is the state of the system correct after recovering from an

OS error? Some types of errors are simple, easily detected

and fixed by techniques such as code reloading. The sys-

tem is restored to a correct state in these cases. Because of

the nature of some complex errors, and unknown extents of

error propagation, it is not possible to guarantee correct-

ness of the system after recovering from them. But this

1

Signaling using Exception Handling

Detection Techniques Recovery Techniques

Virtual Memory Protection

Code checksums

Processor exceptions

Watchdog Timers

Component Micro-Reboots

Code Reloading

Transactional Components

Watchdog Reset Handling

Automatic Service Restarts

Individual Process Recovery

Figure 1. Operating System Error Management Techniques

should not be a deterrent to attempting recovery. For ex-

ample, in the Linux kernel, an error condition known as an

“Oops” is usually resolved by terminating the process that

encountered the error. An “Oops” error only halts the sys-

tem by causing a kernel panic if the error occurred when

an interrupt was being serviced. The Linux kernel thus as-

sumes process-level fault containment. This is not enforced

within the kernel and may not always be true. Our recov-

ery techniques make similar reasonable assumptions about

errors and only recover correctly for the fault models they

are designed to handle. Nevertheless, after recovering from

an error, we advocate notification to the user that the system

might be unstable and should be restarted after saving work.

Our research is currently targeted at the reliability of op-

erating systems that power mobile cellular devices. Our

ideas have been implemented on prototype cellphone hard-

ware based on the ARM architecture; however, our recovery

solutions are not architecture specific and are generic and

widely applicable. We have implemented and evaluated our

recovery techniques in the Choices objected-oriented re-

search OS [7]. We have also implemented watchdog based

recovery and process-level recovery in Linux.

Information about our research into exception handling,

automatic restarts, micro-reboots and watchdog recovery

can also be found in previously published work [13, 12] and

we only briefly discuss these topics. Our new contributions

in this paper include

1. A survey of techniques that can be applied to provide

self-healing functionality to an OS and the correspond-

ing fault models that they address.

2. Exploring the use of code-reloading as a reactive re-

covery strategy when errors are detected in OS code.

3. Exploring transactional objects and exception handling

as a mechanism to roll-back erroneous state within OS

components.

4. Outlining individual process checkpointing and

restoration as a last resort when all other recovery

approaches fail.

The remainder of this paper is organized as follows. In

section 2, we describe error signaling in Choices using ex-

ceptions and the component isolation support for error con-

finement. Section 3 presents the techniques we have ex-

plored for OS error detection and recovery. We evaluate

some of these techniques in section 4. We discuss related

work in section 5 and conclude in section 6. This paper is

an extended version of an internal technical report [11].

2 Error Signaling and Confinement

2.1 Exception handling

Exception handling is commonly used to signal error

conditions in application code. The use of exception han-

dling has also been explored in the Linux kernel [19]. This

provides the ability to raise and handle C++ exception ob-

jects within the OS. In addition to supporting standard C++

exceptions, Choices has support for mapping processor ex-

ceptions to C++ language exceptions [13]. This allows

system developers to write code to handle errors like null

pointer dereferences and illegal opcodes in the OS using

the C++ “catch” construct. Converting processor exceptions

into language exceptions and allowing them to be handled

by system code results in a uniform framework for error

signaling. This provides developers a flexible and powerful

technique to manage errors. Instead of providing generic

handlers that just print out an error message and halt the

system, local exception handlers can provide a more appro-

priate response and attempt to recover the system.

Performance concerns are no longer an issue when using

exception handling. Our previous research has shown that if

the compiler implements exception handling using modern

table-based techniques instead of older context saving tech-

niques, there is no noticeable impact on performance [13].

The need for the compiler to store exception dispatching

tables results in some space overhead. But with the large

amount of memory available in modern systems, this is not

a significant concern either.

2

Isolated OS

Component

Wrapper

Unprivileged

mode

Privileged

mode

method

call

method

return

Choices Kernel

User

App

User

App

......

Figure 2. OS component isolation using
wrappers

2.2 Component isolation

Component isolation helps contain the propagation of an

error. If the error is contained within a component, recovery

can be targeted toward the affected component. This tech-

nique has been investigated for monolithic operating sys-

tems by the Nooks project [33, 32] using virtual memory

based isolation and by the OKE project [6] using a safety

enforcing trusted C compiler. This property is inherent for

micro-kernel operating systems such as Minix3 [20] and

L4 [23].

We have implemented support for component isolation

using virtual memory protection in Choices. Isolated com-

ponents are provided with read-write access to defined

memory regions which include a private stack and a private

heap. If the component encapsulates a device driver, it is ad-

ditionally granted access to its associated memory-mapped

hardware. The rest of the kernel is marked read-only and is

therefore protected from corruption caused by errors in the

component. Unlike the Nooks approach, we execute iso-

lated components in a reduced processor privilege mode for

increased effectiveness.

Components are encapsulated by classes in Choices and

our implementation uses wrapper objects to manage switch-

ing in and out of isolation mode during a method call on an

isolated component. This is is illustrated in figure 2. This

minimizes the code that needs to be changed in the com-

ponents. Wrapper classes use multiple inheritance; they in-

herit generic isolation code from a wrapper base class for

code reuse and they also inherit from the wrapped class

in order to impersonate it to the rest of the OS. Exception

handling also works with isolated components. Wrappers

catch all unhandled exceptions in isolated components and

re-raise them in the domains of callers if component recov-

ery fails.

We have implemented component isolation for several

drivers in Choices. The console driver in Choices has been

replaced with a wrapper that provides isolation and dele-

gates work to the real console driver. This required no

changes to the original driver. Some filesystem objects and

the watchdog timer driver have also been implemented as

isolated components. The isolation properties have been

verified using various common hand-written programming

errors.

Component isolation only provides some error-

containment. Any error detected while executing the

isolated component causes an exception to be raised.

Recovery would require that the exception is appropriately

handled.

3 Error Detection and Recovery

3.1 Code reloading

Transient memory faults (bit-flips) or memory corrup-

tion because of faulty code can cause errors such as invalid

instructions in system code. While ECC memory can help

detect and fix some transient hardware bit-flip errors, it can-

not handle memory corruption errors caused by incorrect

program execution.

Code reloading is a simple and effective technique that

can be used to fix such errors in OS code. The recov-

ery strategy involves reloading the erroneous memory word

from stable storage such as disk or other non-volatile mem-

ory such as flash. If the error is permanent (this can be dis-

covered by testing), it might still be possible to recover by

remapping the affected hardware page using virtual mem-

ory support.

In Choices, if the processor signals an undefined instruc-

tion exception, the handler reloads the instruction from a

copy of the code in memory-mapped flash storage and the

newly loaded instruction is executed. This recovery strategy

is simple to implement; but, it cannot detect memory cor-

ruption that results in an opcode changing to another valid

opcode.

Periodic code checking can be used to improve detec-

tion of memory faults. Hashing and checksums can eas-

ily be used to verify signatures of running code and trig-

ger a reload if a fault is detected. This is a preemptive ap-

proach and can detect faults before they cause errors. This

approach can also detect memory faults that cause an op-

code to change to another valid opcode. Choices computes

periodic CRC-32 checksums of critical kernel code and en-

sures that instruction memory has not been corrupted. If the

checksum changes due to memory corruption, the affected

memory block is reloaded from flash. The instruction cache

is then flushed to ensure that any cached corrupted instruc-

tions are discarded. A code checksum may also be per-

formed immediately after an OS error is detected in order

to ensure that system and recovery code is intact.

Recent ARM based microprocessor designs [22] for mo-

bile phones include Run Time Integrity Checker (RTIC)

3

hardware which can be configured by the OS to periodi-

cally compute and verify SHA-1 hashes of specified code

sections. Any error that is detected is communicated to the

processor through an interrupt. This design significantly re-

duces the performance cost of performing periodic check-

sums as the external hardware only utilizes the memory bus

when it is idle. We do not currently have access to this latest

hardware and are therefore constrained to work with check-

sums performed by the processor.

A similar checksum verification approach can be used to

check for the integrity of static data. It is difficult to check

the integrity of pages containing changing data. This would

require semantic knowledge about the data and therefore re-

quire checker routines written by the OS developers. The

EROS system [29] uses such an approach to verify the con-

sistency of periodic system-wide checkpoints. We are cur-

rently exploring similar support with Choices.

A limitation of this technique is that it cannot be trans-

parently applied to code that is generated at run-time or self-

modifying code. In these cases, special care needs to be

taken to ensure that a copy of the generated code is saved to

stable storage.

3.2 Component micro-rebooting

Micro-reboot has been shown to be an effective recov-

ery technique for application programs [8]. Applying this

technique to operating systems is also feasible and can help

recover from transient hardware faults and some software

bugs. In the Nooks project, micro-reboots in the form

of extension restarts were originally used to recover the

Linux kernel. In Choices, a micro-reboot involves reinitial-

izing the affected component or destroying and re-creating

it and then retrying the request to the component. Micro-

rebooting in Choices is supported by the exception han-

dling framework. While code reloading only fixes errors in

processor instructions, a micro-reboot fixes errors in kernel

data structures. Micro-reboots work together with isolated

components and the wrapper objects that provide isolation

are also used to manage recovery.

The fault model addressed by this technique is compo-

nent level fault containment which can be partially enforced

by component isolation.

3.3 Automatic service restarts

When a critical OS service such as the paging daemon

fails, it grinds the system to a halt. If the failure of such an

important process is detected, a simple restart of the service

may ensure the continued operation of the OS. The fault

model addressed by this technique is single process failure

with no external state corruption.

In micro-kernel operating systems, this essentially in-

volves detecting and restarting failed system services which

are run as user processes. For example, in Minix3, this job

is performed by the reincarnation server [34]. In Choices,

a system process can be created so that it is automatically

restarted if it encounters an unhandled exception.

The process dispatcher is a special system process that

loops continuously waiting for a ready process and yields

to the new process. If the process dispatcher crashes, the

system is rendered unusable. Therefore, in Choices the pro-

cess dispatcher is implemented as a restartable process that

is always recovered if it crashes.

Simple process restarts may not always work if the pro-

cess uses locks to access shared data structures. This hap-

pens when the process dies when holding one or more locks.

Assuming that the shared data structures are not corrupted

or that they can be checked for correctness and fixed [15],

system recovery is only possible if all held locks are re-

leased. For this reason, Choices tracks all locks held by a

process and forcibly releases any held locks when a process

is terminated. We have also implemented lock tracking and

forced unlocking for some types of Linux locks.

3.4 Watchdog-based recovery

External hardware watchdog timers are used to detect er-

rors where the OS is not performing any useful work and is

in an infinite loop. A watchdog timer has to be periodically

reset (kicked) by the OS and will signal the processor (bite)

if the timer expires. Watchdog timers are normally wired to

the reset pin on the processor and cause a full reboot of the

system for recovery. Unfortunately, a reboot of the system

results in a loss of user data and applications currently in

memory.

By taking advantage of the fact that volatile memory is

still preserved after a processor reset, we can reconstruct

both OS and user state and continue to execute even after

the reset. This novel approach avoids complete loss of user

data and results in increased reliability.

We have implemented watchdog-based recovery in both

Linux and Choices [12]. When the watchdog bites, the pro-

cessor, the memory management unit (MMU) and interrupt

subsystem are reset. Our modified reset handler skips the

normal boot sequence if the reset is initiated by a watch-

dog timer. The handler turns the MMU back on, deactivates

the process that was running when the reset was issued, re-

initializes the interrupts and jumps to the operating system’s

process dispatch loop, which picks up the next ready pro-

cess and runs it. The only information that is lost is the state

of the process that was running when the processor was re-

set. This process cannot be scheduled again and is removed

from the process queue. We have also explored resolution

of the lockup condition by delivering an exception to the

4

locked up thread. This allows for the thread to attempt local

recovery instead of being forcibly terminated.

The fault model assumed by this technique is also single

process failure with no external state corruption. Watchdog

recovery makes use of the lock tracking code described in

the previous section to release shared resources held by the

process that is deactivated.

Deadlocks are a special type of lockups that can also trig-

ger a watchdog timeout. Cycle detection in resource wait-

for graphs can help reduce deadlock error detection latency.

This support is expected to be added to Choices soon. Re-

covery may be attempted by restarting some components in

order to break cycles in the graph.

3.5 Transactional Components

We are currently exploring the use of software transac-

tional memory techniques to provide transaction semantics

to objects representing OS components in Choices. When

an error causes an exception to be raised during a transac-

tional operation on the component, the state of the compo-

nent can be rolled back by aborting the transaction. The

operation is then re-tried.

We have integrated parts of the RSTM [24] C++ transac-

tional object library into Choices in order to provide trans-

action support. This is designed to work in conjunctionwith

isolated components in order to minimize error propagation.

Transaction management is performed by the same wrapper

objects that provide isolation. The wrapper aborts the trans-

action and rolls-back component state if there is an unhan-

dled exception. We are currently only using the roll-back

capabilities of the RSTM library. Additional benefits such

as multi-threaded and non-blocking execution provided by

RSTM can be potentially used to improve performance, but

are not yet exploited by Choices.

Supporting a transactional model on components incurs

overheads in terms of both space and time. Space over-

heads are due to the need to store backup copies of com-

ponent state before transactions commit. Time overheads

arise from the need to perform memory copies and mem-

ory management tasks when setting up and committing a

transaction.

This approach is different from component micro-

rebooting because only the current transaction is rolled

back. Micro-rebooting re-initializes the complete internal

state of the component. Depending on the type of com-

ponent, either micro-rebooting or transaction roll-back can

be deployed. In particular, if the component includes sig-

nificant state information that will be lost through micro-

rebooting, transactions can be used to ensure that this state

is recovered. Micro-rebooting can be used when the com-

ponent can tolerate state reinitialization and has negligible

space and time overheads.

The fault model addressed by this approach is arbitrary

memory corruption within an OS component that is de-

tected and signaled by an exception before a transaction on

the component commits.

3.6 Process-level recovery

If transparent recovery is not possible, or if the recov-

ery process itself encounters errors, individual process state

can be saved to stable storage as a last resort. After user

processes are saved, a normal full reboot may be attempted

and the state of the processes can be selectively restored on

the computer. All OS state is re-initialized after the reboot,

potentially eliminating transient errors.

This technique ensures that all user application state is

not lost when the error only affects a few applications or

irrelevant OS state. This can also be combined with filesys-

tem snapshots to ensure that file integrity is not compro-

mised after recovery by continuing to run user processes

that may have errors.

This only requires minimal support from the OS: a func-

tioning non-volatile storage driver and user process state

management code. These can be reloaded from stable stor-

age if their integrity is in doubt. This can be easily im-

plemented in Linux with process state checkpointing soft-

ware [27, 18]. We have included support from the CRAK

project [36] for checkpointing all user processes in the

Linux kernel. The processes can be selectively restored af-

ter a reboot. Currently, the code requires the user to issue

an explicit process save request. Ideally, this should be au-

tomatically done after attempts at transparent recovery have

failed. Choices does not yet include support for process-

level recovery.

The fault model addressed by this recovery technique is

arbitrary OS corruption not affecting user process state and

process recovery code.

4 Evaluation

All of the proposed recovery extensions have been im-

plemented on the Texas Instruments OMAP1610 H2 pro-

totype cellphone hardware [35] and also on a virtual hard-

ware platform based on the ARM Integrator [1] board emu-

lated by the QEMU [4] software. In order to perform some

fault injection studies, we built a fault injector based on

QEMU capable of injecting faults into memory, hardware

registers and raising processor exceptions. In this section,

we describe our experienceswith code-reloading, automatic

restarts, watchdog based recovery and transactional compo-

nents.

5

4.1 Code Reloading

To test the effectiveness of code-reloading, we injected

100 random memory corruption faults into CRC moni-

tored regions holding Choices interrupt vectors and han-

dling code. This simulates errors due to transient memory

bit-flips or software bugs in drivers. Only one fault is in-

jected in every experiment. 85 faults were corrected by the

periodic CRC checking support, avoiding a possible future

failure. 4 of the faults caused an undefined instruction in-

terrupt and were automatically corrected. Only 11 faults

caused a kernel crash. These crashes occurred because er-

rors were encountered before the periodic (5 seconds) CRC

check could detect and fix the faults. This shows that code-

reloading is quite effective in reducing the number of faults

that can be attributed to corrupted OS code.

The effectiveness of this technique also depends on the

check interval. A smaller interval between checks can catch

more faults before they cause errors. But, frequent check-

ing results in reduced performance. It may be possible to

adaptively change the period based on the current error rate

and a given performance degradation threshold. This is a

topic for further research.

4.2 Automatic Restarts

Automatic process restarts, especially when applied to

critical kernel processes also provide significant improve-

ments in reliability. In a fault injection experiment that was

performed 1000 times, a random processor exception was

introduced while the process dispatcher was running. We

found that automatically restarting the dispatcher resulted in

recovery 78.9% of the time. The failures are due to excep-

tions being raised during updates to critical data structures,

thus causing irreparable corruption.

4.3 Watchdog-based Recovery

Our Linux watchdog recovery implementation was

tested by manually writing a device driver that spawns a

buggy kernel thread. The introduced bug causes the thread

to eventually enter into a state in which it enters an infi-

nite loop with interrupts turned off. Without an external

watchdog, this causes the kernel to lock up and hangs the

system. One of our tests consists of a script that runs the

bzip2 decompression algorithm on a compressed file as a

user process and instructs the device driver to spawn the

buggy kernel thread. The decompression is interrupted by

the buggy thread which crashes the kernel. With watch-

dog based recovery support turned on, the kernel recovers

as soon as the processor is reset and the decompression runs

to completion. In all of our experiments, the decompression

was verified to be correct. In another test, we cause the ker-

nel to crash after allowing a user to open a text editor and

start to type text into it. With watchdog based recovery, the

kernel is able to recover after the processor reset and the

user is able to continue editing the text and is eventually

able to save the file to stable storage. It should be noted

that the recovery is perfect in these cases because the bug

does not corrupt external kernel state. Similar experiments

in Choices also result in complete recovery after a kernel

hang.

We also performed automated fault-injection experi-

ments on Linux and Choices to study their recoverability

from watchdog detected lockups. We measured recovery

rates of about 70% in these experiments. A more detailed

analysis of this study is available in an earlier paper [12].

4.4 Transactional Components

In order to study the effectiveness of transaction support,

we performed random register bit-flip fault injection exper-

iments into isolated test components. Component state was

rolled back correctly in all (100%) of the experimentswhen-

ever an exception was raised.

Execution time overhead when compared to using com-

ponents not using transactions is around 0.05-0.10 millisec-

onds at a ARM CPU frequency of 96MHz when the size of

the component is less then 1024 bytes. This overhead is due

to memory allocation and copying. Hardware acceleration

can be used to alleviate this overhead [30]. A more com-

prehensive deployment and study of transactional memory

support is currently in progress.

5 Related Work

There is a plethora of work in hardware and software

fault-tolerance. Fault-tolerance in operating systems has

been studied over several decades [28, 16]. Our recovery

approaches are complementary to a large body of work in

OS error detection using both hardware and software. Lan-

guage based techniques are used by SafeDrive [37] to de-

tect errors in the Linux kernel. Such techniques are com-

plementary to our approaches and can help reduce error de-

tection latencies. There is also some work in detecting in-

finite loop errors in OS code using experimental processor

extensions [25]; however, recovery is not addressed. Self-

checking code has been used to detect changes to running

user applications [21].

Arjuna [26] is a middleware system that supports trans-

action like semantics on objects and thus provides failure

atomicity. Exception handling was however not used in Ar-

juna as it was not supported by the language at that time.

We support transaction semantics on objects within the OS

kernel.

6

There is also some directly related work in application

recovery after OS crashes. The recovery box approach [3]

uses non-volatile memory to store application state that is

restored when the system is restarted after a crash. Re-

searchers at Rutgers have used remote-DMA in order to

access the memory of a crashed system and recover appli-

cation state [31]. In the Rio filesystem, filesystem buffer

cache state is recovered after an OS crash [9]. In contrast to

all these approaches, we try to self-heal the entire operating

system after an error.

Checkpointing can be used to recover from crashed sys-

tems running in virtual machines. VMWare and Xen [17]

provide mechanisms to checkpoint running operating sys-

tems and restore them. When the OS crashes, the check-

point can be restored, thus providing limited recovery.

EROS [29] provides similar support with a built-in check-

pointing framework. Compared to these approaches which

lose all information after the checkpoint, our recovery tech-

niques attempt to recover currently running processes.

6 Conclusions and Future Work

Our experiments demonstrate that it is possible to build

self-healing operating systems through simple and effective

techniques such as code reloading, component isolation and

automatic restarts. While micro-kernels are well suited for

fault-tolerant operation because of their architecture with

inherent isolation, it is also possible to reap similar benefits

in a monolithic kernel built from isolated components. With

the addition of external watchdog hardware support, it is

also possible to detect and attempt recovery from system

hangs that would otherwise remain undetected.

The generic recovery techniques described in this paper

can be improved by incorporating support for a framework

that allows the use of developer specified policies that gov-

ern recovery actions on a case-by-case basis. We have ex-

perimented with some rudimentary support for specifying

simple policies like retry counts for micro-reboots and au-

tomatically restartable processes. But there is a need for

the ability to specify more complex recovery actions that

can take into account dependencies and OS state checking

routines. This may increase the chances of a successful re-

covery.

Micro-reboots and service restarts can lose state infor-

mation which might be necessary for successful recov-

ery. While transactional components provide some form of

state restoration, we are working on obtaining further im-

provements in dependability through re-organization of OS

state [14].

More details, reports and code related to our implemen-

tations of the recovery techniques described in this paper

and the code for the QEMU based fault injector are avail-

able online at http://choices.cs.uiuc.edu/.

Acknowledgments

We thank the anonymous reviewers for their invaluable

feedback. Part of this research was made possible by grants

fromDoCoMo Labs USA and generous support from Texas

Instruments. We would also like to thank Professor Ravis-

hankar K. Iyer for helpful discussions during his class on

fault-tolerant systems. Daniel Chen helped implement part

of the Linux recovery code. Ganesh Bikshandi, Jia Guo

and Justin Trobec helped implement parts of the component

isolation code in Choices. Transactional component support

was added to Choices byWinson Chan, Jin Heo and Chang-

young Jung. Ramkumar Vadali and Shankar Kalyanaraman

helped integrate code from CRAK for checkpointing user

processes in the Linux kernel. This work also benefited

significantly from discussions with Ellick Chan and Jeffrey

Carlyle.

References

[1] ARM Integrator Family. http://www.arm.com/

miscPDFs/8877.pdf.
[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.

Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Transactions on Dependable and Secure

Computing, 1(1):11–33, 2004.
[3] M. Baker and M. Sullivan. The Recovery Box: Using Fast

Recovery to Provide High Availability in the UNIX Environ-

ment. In USENIX, pages 31–44, Summer 1992.
[4] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.

In USENIX Annual Technical Conference, FREENIX Track,

April 2005.
[5] Blue Screen. http://support.microsoft.com/

kb/q129845/.
[6] H. Bos and B. Samwel. Safe kernel programming in the

OKE. In IEEE Open Architectures and Network Program-

ming, 2002.
[7] R. H. Campbell, G. M. Johnston, and V. Russo. “Choices

(Class Hierarchical Open Interface for Custom Embedded

Systems)”. ACM Operating Systems Review, 21(3):9–17,

July 1987.
[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and

A. Fox. Microreboot – A Technique for Cheap Recovery.

In Symposium on Operating Systems Design and Implemen-

tation, San Francisco, CA, December 2004.
[9] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,

and D. Lowell. The Rio File Cache: Surviving Operating

System Crashes. In Architectural Support for Programming

Languages and Operating Systems, pages 74–83, 1996.
[10] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An

Empirical Study of Operating System Errors. In Symposium

on Operating Systems Principles, pages 73–88, 2001.
[11] F. M. David and R. H. Campbell. Recovering fromOperating

System Errors. Technical Report UIUCDCS-R-2007-2831,

University of Illinois at Urbana-Champaign, March 2007.
[12] F. M. David, J. C. Carlyle, and R. H. Campbell. Exploring

Recovery from Operating System Lockups. In USENIX An-

nual Technical Conference, Santa Clara, CA, June 2007.

7

http://choices.cs.uiuc.edu/
http://www.arm.com/miscPDFs/8877.pdf
http://www.arm.com/miscPDFs/8877.pdf
http://support.microsoft.com/kb/q129845/
http://support.microsoft.com/kb/q129845/

[13] F. M. David, J. C. Carlyle, E. M. Chan, D. K. Raila, and

R. H. Campbell. Exception Handling in the Choices Oper-

ating System, volume 4119 of Lecture Notes in Computer

Science. Springer-Verlag Inc., New York, NY, USA, 2006.
[14] F. M. David, J. C. Carlyle, E. M. Chan, P. A. Reames, and

R. H. Campbell. Improving Dependability by Revisiting Op-

erating System Design. In Workshop on Hot Topics in De-

pendability, Edinburgh, UK, June 2007.
[15] B. Demsky and M. Rinard. Automatic Data Structure Repair

for Self-Healing Systems. In Proceedings of the First Work-

shop on Algorithms and Architectures for Self-Managed Sys-

tems, San Diego, California, June 2003.
[16] P. J. Denning. Fault Tolerant Operating Systems. ACMCom-

put. Surv., 8(4):359–389, 1976.
[17] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,

A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art

of Virtualization. In Proceedings of the ACM Symposium on

Operating Systems Principles, October 2003.
[18] J. Duell, P. Hargrove, and E. Roman. The Design and Im-

plementation of Berkeley Lab’s Linux Checkpoint/Restart.

Technical Report LBNL-54941, Lawrence Berkeley Na-

tional Laboratory, 2003.
[19] H. I. Glyfason and G. Hjalmtysson. Exceptional Ker-

nel: Using C++ Exceptions in the Linux Kernel, Oc-

tober 2004. http://netlab.ru.is/exception/

KernelExceptions.pdf.
[20] J. N. Herder. Towards a True Microkernel Operating System.

Master’s thesis, Vrije Universiteit Amsterdam, 2005.
[21] B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan. Dy-

namic Self-Checking Techniques for Improved Tamper Re-

sistance. In Digital Rights Management Workshop, pages

141–159, 2001.
[22] i.MX31 Multimedia Applications Processor. http://

www.freescale.com/files/32bit/doc/ref_

manual/MCIMX31RM.pdf.
[23] J. Liedtke. On micro-kernel construction. In SOSP ’95: Pro-

ceedings of the fifteenth ACM symposium on Operating sys-

tems principles, pages 237–250, New York, NY, USA, 1995.

ACM Press.
[24] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-

stat, W. N. Scherer III, and M. L. Scott. Lowering the

Overhead of Software Transactional Memory. Technical Re-

port TR 893, Computer Science Department, University of

Rochester, Mar 2006.
[25] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu. An Ar-

chitectural Framework for Providing Reliability and Security

Support. In DSN, pages 585–594. IEEE Computer Society,

2004.
[26] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and

M. C. Little. The Design and Implementation of Arjuna.

Computing Systems, 8(2):255–308, 1995.
[27] E. Pinheiro. Truly-Transparent Checkpointing of Par-

allel Applications, 1998. http://www.research.

rutgers.edu/˜edpin/epckpt/.
[28] B. Randell. Operating Systems: The Problems of Perfor-

mance and Reliability. In Proceedings of IFIP Congress 71

Volume 1, pages 281–290, 1971.
[29] J. S. Shapiro. EROS: A Capability System. PhD thesis, Uni-

versity of Pennsylvania, 1999.
[30] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott,

D. Eisenstat, C. Heriot, W. N. Scherer III, and M. F. Spear.

Hardware Acceleration of Software Transactional Memory.

In ACM SIGPLAN Workshop on Transactional Computing.

Jun 2006.
[31] F. Sultan, A. Bohra, S. Smaldone, Y. Pan, P. Gallard,

I. Neamtiu, and L. Iftode. Recovering Internet Service Ses-

sions from Operating System Failures. IEEE Internet Com-

puting, 9(2):17–27, 2005.
[32] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.

Recovering Device Drivers. In Symposium on Operating Sys-

tems Design and Implementation, pages 1–16, 2004.
[33] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the

Reliability of Commodity Operating Systems. In Proceed-

ings of the nineteenth ACM Symposium on Operating Sys-

tems Principles, pages 207–222, New York, NY, USA, 2003.

ACM Press.
[34] A. S. Tanenbaum, J. N. Herder, and H. Bos. Can We

Make Operating Systems Reliable and Secure? Computer,

39(5):44–51, 2006.
[35] Texas Instruments OMAP Platform. http://focus.ti.

com/omap/docs/omaphomepage.tsp.
[36] H. Zhong and J. Nieh. CRAK: Linux Checkpoint/Restart as a

Kernel Module. Technical Report CUCS-014-01, Columbia

University, November 2002.
[37] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,

M. Harre, G. Necula, and E. Brewer. SafeDrive: Safe and

Recoverable Extensions Using Language-Based Techniques.

In Symposium on Operating Systems Design and Implemen-

tation, Nov 2006.

8

http://netlab.ru.is/exception/KernelExceptions.pdf
http://netlab.ru.is/exception/KernelExceptions.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MCIMX31RM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MCIMX31RM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MCIMX31RM.pdf
http://www.research.rutgers.edu/~edpin/epckpt/
http://www.research.rutgers.edu/~edpin/epckpt/
http://focus.ti.com/omap/docs/omaphomepage.tsp
http://focus.ti.com/omap/docs/omaphomepage.tsp

